Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Painleve Equations in the Differential Geometry of Surfaces
Taschenbuch von Ulrich Eitner (u. a.)
Sprache: Englisch

39,40 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
Since the time of surfaces -+ in differential Gauss, parametrized (x, y) P(x, y) have been described a frame attached to the moving geometry through TI(x, y) surface. One introduces the Gauss- which linear dif- Weingarten equations are , ferential equations = U = TIX T1, VT', !PY (1. for the and their condition frame, compatibility - = V + [U, V] 0, UY (1.2) which the Gauss-Codazzi For surfaces in three-dim- represents equations . a sional Euclidean the frame T1 lies in the usually or space, group SO(3) SU(2). On the other a of a non-linear in the form hand, representation equation (1.2) is the of the of of starting point theory integrable equations (theory solitons), which in mathematical in the 1960's appeared physics [NMPZ, AbS, CD, FT, More the differential for the coefficients of AbC]. exactly, partial equation (1.2) the matrices U and V is considered to be if these matrices can be integrable , extended to U V non-trivially a one-parameter family (x, y, A), (x, y, A) satisfying - = + U(A)y V(A). [U(A), V(A)] 0, (1-3) so that the differential is and original partial equation preserved.' . Usually U(A) V are rational functions of the which is called the (A) parameter A, spectral param- In soliton the eter is called the Lax . theory, representation (1.3) representation the Zakharov-Shabat or representation [ZS].
Since the time of surfaces -+ in differential Gauss, parametrized (x, y) P(x, y) have been described a frame attached to the moving geometry through TI(x, y) surface. One introduces the Gauss- which linear dif- Weingarten equations are , ferential equations = U = TIX T1, VT', !PY (1. for the and their condition frame, compatibility - = V + [U, V] 0, UY (1.2) which the Gauss-Codazzi For surfaces in three-dim- represents equations . a sional Euclidean the frame T1 lies in the usually or space, group SO(3) SU(2). On the other a of a non-linear in the form hand, representation equation (1.2) is the of the of of starting point theory integrable equations (theory solitons), which in mathematical in the 1960's appeared physics [NMPZ, AbS, CD, FT, More the differential for the coefficients of AbC]. exactly, partial equation (1.2) the matrices U and V is considered to be if these matrices can be integrable , extended to U V non-trivially a one-parameter family (x, y, A), (x, y, A) satisfying - = + U(A)y V(A). [U(A), V(A)] 0, (1-3) so that the differential is and original partial equation preserved.' . Usually U(A) V are rational functions of the which is called the (A) parameter A, spectral param- In soliton the eter is called the Lax . theory, representation (1.3) representation the Zakharov-Shabat or representation [ZS].
Zusammenfassung

Includes supplementary material: [...]

Inhaltsverzeichnis
1. Introduction.- 2. Basics on Painlevé Equations and Quaternionic Description of Surfaces.- 3. Bonnet Surfaces in Euclidean Three-space.- 4. Bonnet Surfaces in S3 and H3 and Surfaces with Harmonic Inverse Mean Curvature.- 5. Surfaces with Constant Curvature.- 6. Appendices.
Details
Erscheinungsjahr: 2000
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: iv
120 S.
ISBN-13: 9783540414148
ISBN-10: 3540414142
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Eitner, Ulrich
Tu Berlin, Alexander I. Bobenko
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 8 mm
Von/Mit: Ulrich Eitner (u. a.)
Erscheinungsdatum: 12.12.2000
Gewicht: 0,207 kg
Artikel-ID: 105184438
Zusammenfassung

Includes supplementary material: [...]

Inhaltsverzeichnis
1. Introduction.- 2. Basics on Painlevé Equations and Quaternionic Description of Surfaces.- 3. Bonnet Surfaces in Euclidean Three-space.- 4. Bonnet Surfaces in S3 and H3 and Surfaces with Harmonic Inverse Mean Curvature.- 5. Surfaces with Constant Curvature.- 6. Appendices.
Details
Erscheinungsjahr: 2000
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: iv
120 S.
ISBN-13: 9783540414148
ISBN-10: 3540414142
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Eitner, Ulrich
Tu Berlin, Alexander I. Bobenko
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 8 mm
Von/Mit: Ulrich Eitner (u. a.)
Erscheinungsdatum: 12.12.2000
Gewicht: 0,207 kg
Artikel-ID: 105184438
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte