75,35 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Part ONE
PRINCIPLES OF MOLECULAR STRUCTURE AND
FUNCTION 1
Chapter 1
INTRODUCTION TO BIOMOLECULES
Water Is the Solvent of Life
Water Contains Hydronium Ions and Hydroxyl Ions
Ionizable Groups Are Characterized by Their pK Values
The Blood pH is Tightly Regulated
Acidosis and Alkalosis Are Common in Clinical Practice
Bonds Are Formed by Reactions between Functional Groups
Isomeric Forms Are Common in Biomolecules
Properties of Biomolecules Are Determined by Their Noncovalent
Interactions
Triglycerides Consist of Fatty Acids and Glycerol
Monosaccharides Are Polyalcohols with a Keto Group or an
Aldehyde Group
Monosaccharides Form Ring Structures
Complex Carbohydrates Are Formed by Glycosidic Bonds
Polypeptides Are Formed from Amino Acids
Nucleic Acids Are Formed from Nucleotides
Most Biomolecules Are Polymers
Summary
Chapter 2
INTRODUCTION TO PROTEIN STRUCTURE
Amino Acids Are Zwitterions
Amino Acid Side Chains Form Many Noncovalent
Interactions
Peptide Bonds and Disulfide Bonds Form the Primary Structure of
Proteins
Proteins Can Fold Themselves into Many Shapes
a-Helix and ß-Pleated Sheet Are the Most Common Secondary
Structures in Proteins
Globular Proteins Have a Hydrophobic Core
Proteins Lose Their Biological Activities When Their Higher-Order
Structure Is Destroyed
The Solubility of Proteins Depends on pH and Salt
Concentration
Proteins Absorb Ultraviolet Radiation
Proteins Can Be Separated by Their Charge or Their Molecular
Weight
Abnormal Protein Aggregates Can Cause Disease
Neurodegenerative Diseases Are Caused by Protein Aggregates
Protein Misfolding Can Be Contagious
Summary
Chapter 3
OXYGEN TRANSPORTERS: HEMOGLOBIN AND
MYOGLOBIN
The Heme Group Is the Oxygen-Binding Site of Hemoglobin and
Myoglobin
Myoglobin Is a Tightly Packed Globular Protein
Red Blood Cells Are Specialized for Oxygen Transport
The Hemoglobins Are Tetrameric Proteins
Oxygenated and Deoxygenated Hemoglobin Have Different
Quaternary Structures
Oxygen Binding to Hemoglobin Is Cooperative
2,3-Bisphosphoglycerate Is a Negative Allosteric Effector of
Oxygen Binding to Hemoglobin
Fetal Hemoglobin Has a Higher Oxygen-Binding Affinity than
Does Adult Hemoglobin
The Bohr Effect Facilitates Oxygen Delivery
Most Carbon Dioxide Is Transported as Bicarbonate
Summary 38
Chapter 4
ENZYMATIC REACTIONS 39
The Equilibrium Constant Describes the Equilibrium of the
Reaction
The Free Energy Change Is the Driving Force for Chemical
Reactions
The Standard Free Energy Change Determines the Equilibrium
Enzymes Are Both Powerful and Selective
The Substrate Must Bind to Its Enzyme before the Reaction Can
Proceed
Rate Constants Are Useful for Describing Reaction Rates
Enzymes Decrease the Free Energy of Activation
Many Enzymatic Reactions Can Be Described by Michaelis-Menten
Kinetics
Km and Vmax Can Be Determined Graphically
Substrate Half-Life Can Be Determined for First-Order but Not
Zero-Order Reactions
Kcat/Km Predicts the Enzyme Activity at Low Substrate
Concentration
Allosteric Enzymes Do Not Conform to Michaelis-Menten
Kinetics
Enzyme Activity Depends on Temperature and pH
Different Types of Reversible Enzyme Inhibition Can Be
Distinguished Kinetically
Enzymes Stabilize the Transition State
Chymotrypsin Forms a Transient Covalent Bond during
Catalysis
Summary
Chapter 5
COENZYMES
Enzymes Are Classified According to Their Reaction Type
Adenosine Triphosphate Has Two Energy-Rich Bonds
ATP Is the Phosphate Donor in Phosphorylation Reactions
ATP Hydrolysis Drives Endergonic Reactions
Cells Always Try to Maintain a High Energy Charge
Dehydrogenase Reactions Require Specialized Coenzymes
Coenzyme A Activates Organic Acids
S-Adenosyl Methionine Donates Methyl Groups
Many Enzymes Require a Metal Ion
Summary
Part TWO
GENETIC INFORMATION: DNA, RNA, AND
PROTEIN SYNTHESIS
Chapter 6
DNA, RNA, AND PROTEIN SYNTHESIS
All Living Organisms Use DNA as Their Genetic Databank
DNA Contains Four Bases
DNA Forms a Double Helix
DNA Can Be Denatured
DNA Is Supercoiled
DNA Replication Is Semiconservative
DNA Is Synthesized by DNA Polymerases
DNA Polymerases Have Exonuclease Activities
Unwinding Proteins Present a Single-Stranded Template to the
DNA Polymerases
One of the New DNA Strands Is Synthesized Discontinuously
RNA Plays Key Roles in Gene Expression
The S Subunit Recognizes Promoters
DNA Is Faithfully Copied into RNA
Some RNAs Are Chemically Modified after Transcription
The Genetic Code Defines the Structural Relationship between mRNA and Polypeptide
Transfer RNA Is the Adapter Molecule in Protein Synthesis
Amino Acids Are Activated by an Ester Bond with the 3' Terminus
of the tRNA
Many Transfer RNAs Recognize More than One Codon
Ribosomes Are the Workbenches for Protein Synthesis
The Initiation Complex Brings Together Ribosome, Messenger
RNA, and Initiator tRNA
Polypeptides Grow Stepwise from the Amino Terminus to the
Carboxyl Terminus
Protein Synthesis Is Energetically Expensive
Gene Expression Is Tightly Regulated
A Repressor Protein Regulates Transcription of the lac Operon
in E. coli
Anabolic Operons Are Repressed by the End Product of the
Pathway
Glucose Regulates the Transcription of Many Catabolic
Operons
Transcriptional Regulation Depends on DNA-Binding
Proteins
Summary
Chapter 7
THE HUMAN GENOME
Chromatin Consists of DNA and Histones
The Nucleosome Is the Structural Unit of Chromatin
Covalent Histone Modifications Regulate DNA Replication and
Transcription
DNA Methylation Silences Genes
All Eukaryotic Chromosomes Have a Centromere, Telomeres, and
Replication Origins
Telomerase Is Required (but Not Sufficient) for Immortality
Eukaryotic DNA Replication Requires Three DNA
Polymerases
Most Human DNA Does Not Code for Proteins
Gene Families Originate by Gene Duplication
The Genome Contains Many Tandem Repeats
Some DNA Sequences Are Copies of Functional RNAs
Many Repetitive DNA Sequences Are (or Were) Mobile
L1 Elements Encode a Reverse Transcriptase
Alu Sequences Spread with the Help of L1 Reverse
Transcriptase
Mobile Elements Are Dangerous
Humans Have Approximately 20,000 Genes
Transcriptional Initiation Requires General Transcription
Factors
Genes Are Surrounded by Regulatory Sites
Gene Expression Is Regulated by DNA-Binding Proteins
Long Non-coding RNAs Play Roles in Gene Expression
mRNA Processing Starts during Transcription
Translational Initiation Requires Many Initiation Factors
mRNA Processing and Translation Are Often Regulated
Small RNA Molecules Inhibit Gene Expression
Mitochondria Have Their Own DNA
Human Genomes Are Very Diverse
Human Genomes Have Many Low-Frequency Copy Number
Variations
Summary
Chapter 8
PROTEIN TARGETING AND PROTEOSTASIS
A Signal Sequence Directs Polypeptides to the Endoplasmic
Reticulum
Glycoproteins Are Processed in the Secretory Pathway
The Endocytic Pathway Brings Proteins into the Cell
Lysosomes Are Organelles of Intracellular Digestion
Autophagy Recycles Cellular Proteins and Organelles
Poorly Folded Proteins Are Either Repaired or Destroyed
Ubiquitin Markes Proteins for Destruction
The Proteostatic System Protects Cells from Abnormal Proteins
Summary
Chapter 9
INTRODUCTION TO GENETIC DISEASES
Four Types of Genetic Disease
Mutations Occur in the Germline and in Somatic Cells
Mutations Are an Important Cause of Poor Health
Small Mutations Lead to Abnormal Proteins
Most Mutations Are Caused by Replication Errors
Mutations Can Be Induced by Radiation and Chemicals
Mismatch Repair Corrects Replication Errors
Missing Bases and Abnormal Bases Need to Be Replaced
Nucleotide Excision Repair Removes Bulky Lesions
Repair of DNA Double-Strand Breaks Is Difficult
Hemoglobin Genes Form Two Gene Clusters
Many Point Mutations in Hemoglobin Genes Are Known
Sickle Cell Disease Is Caused by a Point Mutation in the b-Chain
Gene
SA Heterozygotes Are Protected from Tropical Malaria
a-Thalassemia Is Most Often Caused by Large Deletions
Many Different Mutations Can Cause ß-Thalassemia
Fetal Hemoglobin Protects from the Effects of ß-Thalassemia and
Sickle Cell Disease
Summary
Chapter 10
VIRUSES
Viruses Can Replicate Only in a Host Cell
Bacteriophage T4 Destroys Its Host Cell
DNA Viruses Substitute Their Own DNA for the Host Cell
DNA
? Phage Can Integrate Its DNA into the Host Cell
Chromosome
RNA Viruses Require an RNA-Dependent RNA Polymerase
Retroviruses Replicate Through a DNA Intermediate
Plasmids Are Small "Accessory Chromosomes" or "Symbiotic
Viruses" of Bacteria
Bacteria Can Exchange Genes by...
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Biophysik |
Genre: | Biologie, Importe |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780323296168 |
ISBN-10: | 0323296165 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Meisenberg, Gerhard
Simmons, William H. |
Hersteller: | Elsevier - Health Sciences Division |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 276 x 220 x 25 mm |
Von/Mit: | Gerhard Meisenberg (u. a.) |
Erscheinungsdatum: | 01.12.2016 |
Gewicht: | 1,539 kg |
Part ONE
PRINCIPLES OF MOLECULAR STRUCTURE AND
FUNCTION 1
Chapter 1
INTRODUCTION TO BIOMOLECULES
Water Is the Solvent of Life
Water Contains Hydronium Ions and Hydroxyl Ions
Ionizable Groups Are Characterized by Their pK Values
The Blood pH is Tightly Regulated
Acidosis and Alkalosis Are Common in Clinical Practice
Bonds Are Formed by Reactions between Functional Groups
Isomeric Forms Are Common in Biomolecules
Properties of Biomolecules Are Determined by Their Noncovalent
Interactions
Triglycerides Consist of Fatty Acids and Glycerol
Monosaccharides Are Polyalcohols with a Keto Group or an
Aldehyde Group
Monosaccharides Form Ring Structures
Complex Carbohydrates Are Formed by Glycosidic Bonds
Polypeptides Are Formed from Amino Acids
Nucleic Acids Are Formed from Nucleotides
Most Biomolecules Are Polymers
Summary
Chapter 2
INTRODUCTION TO PROTEIN STRUCTURE
Amino Acids Are Zwitterions
Amino Acid Side Chains Form Many Noncovalent
Interactions
Peptide Bonds and Disulfide Bonds Form the Primary Structure of
Proteins
Proteins Can Fold Themselves into Many Shapes
a-Helix and ß-Pleated Sheet Are the Most Common Secondary
Structures in Proteins
Globular Proteins Have a Hydrophobic Core
Proteins Lose Their Biological Activities When Their Higher-Order
Structure Is Destroyed
The Solubility of Proteins Depends on pH and Salt
Concentration
Proteins Absorb Ultraviolet Radiation
Proteins Can Be Separated by Their Charge or Their Molecular
Weight
Abnormal Protein Aggregates Can Cause Disease
Neurodegenerative Diseases Are Caused by Protein Aggregates
Protein Misfolding Can Be Contagious
Summary
Chapter 3
OXYGEN TRANSPORTERS: HEMOGLOBIN AND
MYOGLOBIN
The Heme Group Is the Oxygen-Binding Site of Hemoglobin and
Myoglobin
Myoglobin Is a Tightly Packed Globular Protein
Red Blood Cells Are Specialized for Oxygen Transport
The Hemoglobins Are Tetrameric Proteins
Oxygenated and Deoxygenated Hemoglobin Have Different
Quaternary Structures
Oxygen Binding to Hemoglobin Is Cooperative
2,3-Bisphosphoglycerate Is a Negative Allosteric Effector of
Oxygen Binding to Hemoglobin
Fetal Hemoglobin Has a Higher Oxygen-Binding Affinity than
Does Adult Hemoglobin
The Bohr Effect Facilitates Oxygen Delivery
Most Carbon Dioxide Is Transported as Bicarbonate
Summary 38
Chapter 4
ENZYMATIC REACTIONS 39
The Equilibrium Constant Describes the Equilibrium of the
Reaction
The Free Energy Change Is the Driving Force for Chemical
Reactions
The Standard Free Energy Change Determines the Equilibrium
Enzymes Are Both Powerful and Selective
The Substrate Must Bind to Its Enzyme before the Reaction Can
Proceed
Rate Constants Are Useful for Describing Reaction Rates
Enzymes Decrease the Free Energy of Activation
Many Enzymatic Reactions Can Be Described by Michaelis-Menten
Kinetics
Km and Vmax Can Be Determined Graphically
Substrate Half-Life Can Be Determined for First-Order but Not
Zero-Order Reactions
Kcat/Km Predicts the Enzyme Activity at Low Substrate
Concentration
Allosteric Enzymes Do Not Conform to Michaelis-Menten
Kinetics
Enzyme Activity Depends on Temperature and pH
Different Types of Reversible Enzyme Inhibition Can Be
Distinguished Kinetically
Enzymes Stabilize the Transition State
Chymotrypsin Forms a Transient Covalent Bond during
Catalysis
Summary
Chapter 5
COENZYMES
Enzymes Are Classified According to Their Reaction Type
Adenosine Triphosphate Has Two Energy-Rich Bonds
ATP Is the Phosphate Donor in Phosphorylation Reactions
ATP Hydrolysis Drives Endergonic Reactions
Cells Always Try to Maintain a High Energy Charge
Dehydrogenase Reactions Require Specialized Coenzymes
Coenzyme A Activates Organic Acids
S-Adenosyl Methionine Donates Methyl Groups
Many Enzymes Require a Metal Ion
Summary
Part TWO
GENETIC INFORMATION: DNA, RNA, AND
PROTEIN SYNTHESIS
Chapter 6
DNA, RNA, AND PROTEIN SYNTHESIS
All Living Organisms Use DNA as Their Genetic Databank
DNA Contains Four Bases
DNA Forms a Double Helix
DNA Can Be Denatured
DNA Is Supercoiled
DNA Replication Is Semiconservative
DNA Is Synthesized by DNA Polymerases
DNA Polymerases Have Exonuclease Activities
Unwinding Proteins Present a Single-Stranded Template to the
DNA Polymerases
One of the New DNA Strands Is Synthesized Discontinuously
RNA Plays Key Roles in Gene Expression
The S Subunit Recognizes Promoters
DNA Is Faithfully Copied into RNA
Some RNAs Are Chemically Modified after Transcription
The Genetic Code Defines the Structural Relationship between mRNA and Polypeptide
Transfer RNA Is the Adapter Molecule in Protein Synthesis
Amino Acids Are Activated by an Ester Bond with the 3' Terminus
of the tRNA
Many Transfer RNAs Recognize More than One Codon
Ribosomes Are the Workbenches for Protein Synthesis
The Initiation Complex Brings Together Ribosome, Messenger
RNA, and Initiator tRNA
Polypeptides Grow Stepwise from the Amino Terminus to the
Carboxyl Terminus
Protein Synthesis Is Energetically Expensive
Gene Expression Is Tightly Regulated
A Repressor Protein Regulates Transcription of the lac Operon
in E. coli
Anabolic Operons Are Repressed by the End Product of the
Pathway
Glucose Regulates the Transcription of Many Catabolic
Operons
Transcriptional Regulation Depends on DNA-Binding
Proteins
Summary
Chapter 7
THE HUMAN GENOME
Chromatin Consists of DNA and Histones
The Nucleosome Is the Structural Unit of Chromatin
Covalent Histone Modifications Regulate DNA Replication and
Transcription
DNA Methylation Silences Genes
All Eukaryotic Chromosomes Have a Centromere, Telomeres, and
Replication Origins
Telomerase Is Required (but Not Sufficient) for Immortality
Eukaryotic DNA Replication Requires Three DNA
Polymerases
Most Human DNA Does Not Code for Proteins
Gene Families Originate by Gene Duplication
The Genome Contains Many Tandem Repeats
Some DNA Sequences Are Copies of Functional RNAs
Many Repetitive DNA Sequences Are (or Were) Mobile
L1 Elements Encode a Reverse Transcriptase
Alu Sequences Spread with the Help of L1 Reverse
Transcriptase
Mobile Elements Are Dangerous
Humans Have Approximately 20,000 Genes
Transcriptional Initiation Requires General Transcription
Factors
Genes Are Surrounded by Regulatory Sites
Gene Expression Is Regulated by DNA-Binding Proteins
Long Non-coding RNAs Play Roles in Gene Expression
mRNA Processing Starts during Transcription
Translational Initiation Requires Many Initiation Factors
mRNA Processing and Translation Are Often Regulated
Small RNA Molecules Inhibit Gene Expression
Mitochondria Have Their Own DNA
Human Genomes Are Very Diverse
Human Genomes Have Many Low-Frequency Copy Number
Variations
Summary
Chapter 8
PROTEIN TARGETING AND PROTEOSTASIS
A Signal Sequence Directs Polypeptides to the Endoplasmic
Reticulum
Glycoproteins Are Processed in the Secretory Pathway
The Endocytic Pathway Brings Proteins into the Cell
Lysosomes Are Organelles of Intracellular Digestion
Autophagy Recycles Cellular Proteins and Organelles
Poorly Folded Proteins Are Either Repaired or Destroyed
Ubiquitin Markes Proteins for Destruction
The Proteostatic System Protects Cells from Abnormal Proteins
Summary
Chapter 9
INTRODUCTION TO GENETIC DISEASES
Four Types of Genetic Disease
Mutations Occur in the Germline and in Somatic Cells
Mutations Are an Important Cause of Poor Health
Small Mutations Lead to Abnormal Proteins
Most Mutations Are Caused by Replication Errors
Mutations Can Be Induced by Radiation and Chemicals
Mismatch Repair Corrects Replication Errors
Missing Bases and Abnormal Bases Need to Be Replaced
Nucleotide Excision Repair Removes Bulky Lesions
Repair of DNA Double-Strand Breaks Is Difficult
Hemoglobin Genes Form Two Gene Clusters
Many Point Mutations in Hemoglobin Genes Are Known
Sickle Cell Disease Is Caused by a Point Mutation in the b-Chain
Gene
SA Heterozygotes Are Protected from Tropical Malaria
a-Thalassemia Is Most Often Caused by Large Deletions
Many Different Mutations Can Cause ß-Thalassemia
Fetal Hemoglobin Protects from the Effects of ß-Thalassemia and
Sickle Cell Disease
Summary
Chapter 10
VIRUSES
Viruses Can Replicate Only in a Host Cell
Bacteriophage T4 Destroys Its Host Cell
DNA Viruses Substitute Their Own DNA for the Host Cell
DNA
? Phage Can Integrate Its DNA into the Host Cell
Chromosome
RNA Viruses Require an RNA-Dependent RNA Polymerase
Retroviruses Replicate Through a DNA Intermediate
Plasmids Are Small "Accessory Chromosomes" or "Symbiotic
Viruses" of Bacteria
Bacteria Can Exchange Genes by...
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Biophysik |
Genre: | Biologie, Importe |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780323296168 |
ISBN-10: | 0323296165 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Meisenberg, Gerhard
Simmons, William H. |
Hersteller: | Elsevier - Health Sciences Division |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 276 x 220 x 25 mm |
Von/Mit: | Gerhard Meisenberg (u. a.) |
Erscheinungsdatum: | 01.12.2016 |
Gewicht: | 1,539 kg |