63,35 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Features fully updated explanation on how to simulate, conceptualize, and visualize random statistical processes and apply machine learning methods
New edition features Python version 3.7 and connects to key open-source Python communities and corresponding modules focused on the latest developments in this area
Outlines probability, statistics, and machine learning concepts using an intuitive visual approach, backed up with corresponding visualization codes
Introduction.- Part 1 Getting Started with Scientific Python.- Installation and Setup.- Numpy.- Matplotlib.- Ipython.- Jupyter Notebook.- Scipy.- Pandas.- Sympy.- Interfacing with Compiled Libraries.- Integrated Development Environments.- Quick Guide to Performance and Parallel Programming.- Other Resources.- Part 2 Probability.- Introduction.- Projection Methods.- Conditional Expectation as Projection.- Conditional Expectation and Mean Squared Error.- Worked Examples of Conditional Expectation and Mean Square Error Optimization.- Useful Distributions.- Information Entropy.- Moment Generating Functions.- Monte Carlo Sampling Methods.- Useful Inequalities.- Part 3 Statistics.- Python Modules for Statistics.- Types of Convergence.- Estimation Using Maximum Likelihood.- Hypothesis Testing and P-Values.- Confidence Intervals.- Linear Regression.- Maximum A-Posteriori.- Robust Statistics.- Bootstrapping.- Gauss Markov.- Nonparametric Methods.- Survival Analysis.- Part 4 Machine Learning.- Introduction.- Python Machine Learning Modules.- Theory of Learning.- Decision Trees.- Boosting Trees.- Logistic Regression.- Generalized Linear Models.- Regularization.- Support Vector Machines.- Dimensionality Reduction.- Clustering.- Ensemble Methods.- Deep Learning.- Notation.- References.- Index.
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiv
384 S. 128 s/w Illustr. 37 farbige Illustr. 384 p. 165 illus. 37 illus. in color. |
ISBN-13: | 9783030185473 |
ISBN-10: | 3030185478 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Unpingco, José |
Auflage: | Second Edition 2019 |
Hersteller: | Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 22 mm |
Von/Mit: | José Unpingco |
Erscheinungsdatum: | 14.08.2020 |
Gewicht: | 0,604 kg |
Features fully updated explanation on how to simulate, conceptualize, and visualize random statistical processes and apply machine learning methods
New edition features Python version 3.7 and connects to key open-source Python communities and corresponding modules focused on the latest developments in this area
Outlines probability, statistics, and machine learning concepts using an intuitive visual approach, backed up with corresponding visualization codes
Introduction.- Part 1 Getting Started with Scientific Python.- Installation and Setup.- Numpy.- Matplotlib.- Ipython.- Jupyter Notebook.- Scipy.- Pandas.- Sympy.- Interfacing with Compiled Libraries.- Integrated Development Environments.- Quick Guide to Performance and Parallel Programming.- Other Resources.- Part 2 Probability.- Introduction.- Projection Methods.- Conditional Expectation as Projection.- Conditional Expectation and Mean Squared Error.- Worked Examples of Conditional Expectation and Mean Square Error Optimization.- Useful Distributions.- Information Entropy.- Moment Generating Functions.- Monte Carlo Sampling Methods.- Useful Inequalities.- Part 3 Statistics.- Python Modules for Statistics.- Types of Convergence.- Estimation Using Maximum Likelihood.- Hypothesis Testing and P-Values.- Confidence Intervals.- Linear Regression.- Maximum A-Posteriori.- Robust Statistics.- Bootstrapping.- Gauss Markov.- Nonparametric Methods.- Survival Analysis.- Part 4 Machine Learning.- Introduction.- Python Machine Learning Modules.- Theory of Learning.- Decision Trees.- Boosting Trees.- Logistic Regression.- Generalized Linear Models.- Regularization.- Support Vector Machines.- Dimensionality Reduction.- Clustering.- Ensemble Methods.- Deep Learning.- Notation.- References.- Index.
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiv
384 S. 128 s/w Illustr. 37 farbige Illustr. 384 p. 165 illus. 37 illus. in color. |
ISBN-13: | 9783030185473 |
ISBN-10: | 3030185478 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Unpingco, José |
Auflage: | Second Edition 2019 |
Hersteller: | Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 22 mm |
Von/Mit: | José Unpingco |
Erscheinungsdatum: | 14.08.2020 |
Gewicht: | 0,604 kg |