63,45 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov¿Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theorythroughout.
Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov¿Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theorythroughout.
Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
Rabi Bhattacharya is Professor of Mathematics at The University of Arizona. He is a Fellow of the Institute of Mathematical Statistics and a recipient of the U.S. Senior Scientist Humboldt Award and of a Guggenheim Fellowship. He has made significant contributions to the theory and application of Markov processes, and more recently, nonparametric statistical inference on manifolds. He has served on editorial boards of many international journals and has published several research monographs and graduate texts on probability and statistics.
Edward C. Waymire is Emeritus Professor of Mathematics at Oregon State University. He received a PhD in mathematics from the University of Arizona in the theory of interacting particle systems. His primary research concerns applications of probability and stochastic processes to problems of contemporary applied mathematics pertaining to various types of flows, dispersion, and random disorder. He is a former chief editor of the Annals of Applied Probability, and past president of the Bernoulli Society for Mathematical Statistics and Probability.
Both authors have co-authored numerous books, including A Basic Course in Probability Theory, which is an ideal companion to the current volume.
Offers an accessible introduction to the rigorous study of stochastic processes
Builds from simple examples to formal proofs, illuminating key ideas and computations
Showcases a selection of important contemporary applications, including mathematical finance, optimal stopping, and ruin theory
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xv
396 S. 20 s/w Illustr. 396 p. 20 illus. |
ISBN-13: | 9783030789374 |
ISBN-10: | 3030789373 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Waymire, Edward C.
Bhattacharya, Rabi |
Hersteller: | Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 27 mm |
Von/Mit: | Edward C. Waymire (u. a.) |
Erscheinungsdatum: | 21.09.2021 |
Gewicht: | 0,856 kg |
Rabi Bhattacharya is Professor of Mathematics at The University of Arizona. He is a Fellow of the Institute of Mathematical Statistics and a recipient of the U.S. Senior Scientist Humboldt Award and of a Guggenheim Fellowship. He has made significant contributions to the theory and application of Markov processes, and more recently, nonparametric statistical inference on manifolds. He has served on editorial boards of many international journals and has published several research monographs and graduate texts on probability and statistics.
Edward C. Waymire is Emeritus Professor of Mathematics at Oregon State University. He received a PhD in mathematics from the University of Arizona in the theory of interacting particle systems. His primary research concerns applications of probability and stochastic processes to problems of contemporary applied mathematics pertaining to various types of flows, dispersion, and random disorder. He is a former chief editor of the Annals of Applied Probability, and past president of the Bernoulli Society for Mathematical Statistics and Probability.
Both authors have co-authored numerous books, including A Basic Course in Probability Theory, which is an ideal companion to the current volume.
Offers an accessible introduction to the rigorous study of stochastic processes
Builds from simple examples to formal proofs, illuminating key ideas and computations
Showcases a selection of important contemporary applications, including mathematical finance, optimal stopping, and ruin theory
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xv
396 S. 20 s/w Illustr. 396 p. 20 illus. |
ISBN-13: | 9783030789374 |
ISBN-10: | 3030789373 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Waymire, Edward C.
Bhattacharya, Rabi |
Hersteller: | Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 27 mm |
Von/Mit: | Edward C. Waymire (u. a.) |
Erscheinungsdatum: | 21.09.2021 |
Gewicht: | 0,856 kg |