Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Regularity of Minimal Surfaces
Buch von Ulrich Dierkes (u. a.)
Sprache: Englisch

160,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas.
This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaüs problem for H-surfaces in a Riemannian manifold.
A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed.
The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaüs problem have no interior branch points.
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas.
This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaüs problem for H-surfaces in a Riemannian manifold.
A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed.
The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaüs problem have no interior branch points.
Zusammenfassung
Title is also available as part of a set: Minimal Surfaces (978-3-642-11715-2)
Inhaltsverzeichnis
Boundary Behaviour of Minimal Surfaces.- Minimal Surfaces with Free Boundaries.- The Boundary Behaviour of Minimal Surfaces.- Singular Boundary Points of Minimal Surfaces.- Geometric Properties of Minimal Surfaces.- Enclosure and Existence Theorems for Minimal Surfaces and H-Surfaces. Isoperimetric Inequalities.- The Thread Problem.- Branch Points.
Details
Erscheinungsjahr: 2010
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Grundlehren der mathematischen Wissenschaften
Inhalt: xvii
623 S.
62 s/w Illustr.
6 farbige Illustr.
623 p. 68 illus.
6 illus. in color.
ISBN-13: 9783642116995
ISBN-10: 364211699X
Sprache: Englisch
Herstellernummer: 12618897
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Dierkes, Ulrich
Tromba, Anthony
Hildebrandt, Stefan
Auflage: 2nd, revidierte and enlarged ed. 2010
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Grundlehren der mathematischen Wissenschaften
Maße: 241 x 160 x 39 mm
Von/Mit: Ulrich Dierkes (u. a.)
Erscheinungsdatum: 30.09.2010
Gewicht: 1,121 kg
Artikel-ID: 101306251
Zusammenfassung
Title is also available as part of a set: Minimal Surfaces (978-3-642-11715-2)
Inhaltsverzeichnis
Boundary Behaviour of Minimal Surfaces.- Minimal Surfaces with Free Boundaries.- The Boundary Behaviour of Minimal Surfaces.- Singular Boundary Points of Minimal Surfaces.- Geometric Properties of Minimal Surfaces.- Enclosure and Existence Theorems for Minimal Surfaces and H-Surfaces. Isoperimetric Inequalities.- The Thread Problem.- Branch Points.
Details
Erscheinungsjahr: 2010
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Grundlehren der mathematischen Wissenschaften
Inhalt: xvii
623 S.
62 s/w Illustr.
6 farbige Illustr.
623 p. 68 illus.
6 illus. in color.
ISBN-13: 9783642116995
ISBN-10: 364211699X
Sprache: Englisch
Herstellernummer: 12618897
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Dierkes, Ulrich
Tromba, Anthony
Hildebrandt, Stefan
Auflage: 2nd, revidierte and enlarged ed. 2010
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Grundlehren der mathematischen Wissenschaften
Maße: 241 x 160 x 39 mm
Von/Mit: Ulrich Dierkes (u. a.)
Erscheinungsdatum: 30.09.2010
Gewicht: 1,121 kg
Artikel-ID: 101306251
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte