Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Reverse Osmosis
Buch von Jane Kucera
Sprache: Englisch

246,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
REVERSE OSMOSIS

Reverse osmosis (RO) is the world's leading demineralization technology. It is used to provide clean water for potable and ultrapure uses as well as to treat wastewater for recycle or reuse. Regardless of the application or industry, the basics of RO are the same. This book provides the reader with in-depth knowledge about RO basics for any application.

This third edition is completely updated, still covering the basics of RO but with new insights as to how to optimize performance. Sections of the book cover the history of RO, membrane and transport model development, pretreatment to minimize membrane deposition and damage, effective cleaning and troubleshooting methods, and data collection and analysis. A new section was added that provides detail about RO and water sustainability. Alternative membrane materials and high-recovery RO are some of the topics included in this new section.

Topics are presented in clear and concise language with enough depth to enhance comprehension. The reader will walk away with a new understanding of the topics covered in the book, thereby enabling them to optimize their own RO systems. Engineers and consultants will be able to design or troubleshoot RO systems more effectively. This book is the complete and definitive guide to RO for all persons concerned with RO systems.
REVERSE OSMOSIS

Reverse osmosis (RO) is the world's leading demineralization technology. It is used to provide clean water for potable and ultrapure uses as well as to treat wastewater for recycle or reuse. Regardless of the application or industry, the basics of RO are the same. This book provides the reader with in-depth knowledge about RO basics for any application.

This third edition is completely updated, still covering the basics of RO but with new insights as to how to optimize performance. Sections of the book cover the history of RO, membrane and transport model development, pretreatment to minimize membrane deposition and damage, effective cleaning and troubleshooting methods, and data collection and analysis. A new section was added that provides detail about RO and water sustainability. Alternative membrane materials and high-recovery RO are some of the topics included in this new section.

Topics are presented in clear and concise language with enough depth to enhance comprehension. The reader will walk away with a new understanding of the topics covered in the book, thereby enabling them to optimize their own RO systems. Engineers and consultants will be able to design or troubleshoot RO systems more effectively. This book is the complete and definitive guide to RO for all persons concerned with RO systems.
Über den Autor

Jane Kucera is a senior technical consultant with Nalco Water, an Ecolab Company, where she designs water and wastewater use and reuse facilities. With over 40 years of experience, she has an MS in chemical engineering and has authored two books, both with Scrivener Publishing, the first and second editions of Reverse Osmosis, and the first and second editions of Desalination: Water from Water. She is active in the International Water Conference (IWC) and served as the 2023 Conference Chair. She received the 2021 Award of Merit offered by the Engineers' Society of Western Pennsylvania for her work in the water treatment industry and contributions to the IWC. Jane has a Teaching Credential from the State of California and taught chemistry at Linfield University, Los Angeles Valley College, and Central Oregon Community College.

Inhaltsverzeichnis

Preface to the 3rd Edition xxi

Acknowledgements xxiii

Section I: Fundamentals 1

1 Introduction to Reverse Osmosis: History, Challenges, and Future Directions 3

1.1 Introduction 3

1.2 A Brief History of Reverse Osmosis 5

1.2.1 Early Development 5

1.2.2 Advances 1970s-1980s 10

1.2.3 Advances from 1990s through the Early 2000s 12

1.3 Challenges and Prospects 14

1.3.1 Membrane Materials Development 15

1.3.2 Modification of Element Construction for Ultra-High Pressure or High-Temperature Operation 17

1.3.2.1 Ultra-High Pressure Spiral Wound RO 17

1.3.2.2 High-Temperature Elements 18

1.3.3 Optimization of RO Element Feed Channel Spacer 19

1.3.4 Other Advances and Future Requirements 23

1.4 Summary 26

Symbols 26

Nomenclature 27

References 27

2 Principles and Terminology 33

2.1 Semipermeable Membranes 33

2.2 Osmosis 33

2.3 Reverse Osmosis 35

2.4 Basic Performance Parameters: Recovery, Rejection, and Flux 35

2.4.1 Recovery and Concentration Factor 35

2.4.2 Rejection 38

2.4.3 Flux 41

2.4.3.1 Water Flux 41

2.4.3.2 Solute Flux 43

2.5 Filtration 43

2.5.1 Dead-End Filtration 43

2.5.2 Cross-Flow Filtration 43

2.6 Concentration Polarization 45

Symbols 47

Nomenclature 48

References 48

3 Membranes: Transport Models, Characterization, and Elements 51

3.1 Membrane Transport Models 51

3.1.1 Solution-Diffusion Transport Model 52

3.1.2 Modified Solution-Diffusion Transport Models 55

3.1.2.1 Solution-Diffusion Imperfection Model 55

3.1.2.2 Extended Solution-Diffusion Model 56

3.1.3 Pore-Based Transport Models 56

3.1.4 Models Based on Non-Equilibrium Thermodynamics 57

3.2 Polymeric Membranes 57

3.2.1 Cellulose Acetate 57

3.2.2 Linear Polyamide (Aramids) 61

3.2.3 Fully Aromatic Polyamide Composite Membranes 63

3.2.3.1 NS-100 Membrane 64

3.2.3.2 FT-30 Composite Membrane 67

3.2.4 Characterization of CA and Composite Polyamide Membranes 73

3.2.4.1 Surface Roughness 73

3.2.4.2 Zeta Potential (Surface Charge) 76

3.2.4.3 Hydrophilicity 76

3.2.5 Other Membrane Polymers 78

3.3 Membrane Elements 80

3.3.1 Plate and Frame Elements 81

3.3.2 Tubular Elements 82

3.3.3 Hollow Fine Fiber Elements 83

3.3.4 Spiral Wound Elements 84

3.4 Specialty Membranes and Elements 91

3.4.1 Specialty Membranes 91

3.4.1.1 Dry Membranes 91

3.4.1.2 Boron-Rejecting Membranes 92

3.4.2 Specialty Elements 93

3.4.2.1 Sanitary Elements 93

3.4.2.2 Disc Tube Elements 94

3.4.2.3 Vibratory Shear Enhanced Processing (VSEP) Elements and System 94

3.4.2.4 Ultra-High Pressure and High Temperature Elements 95

Symbols 95

Nomenclature 96

References 97

Section II: System Design and Engineering 103

4 Basic Design Arrangements and Concentration Polarization Guidelines 105

4.1 Arrays and Stages 105

4.1.1 Recovery per System Array 106

4.1.2 Element-By-Element Flow and Quality Distribution 108

4.1.3 Flux Guidelines 109

4.1.4 Cross-Flow Velocity Guidelines for Array Design 111

4.1.5 Concentrate Recycle 112

4.2 Passes 113

Symbols 115

Nomenclature 115

References 115

5 RO System Design Using Design Software 117

5.1 RO System Design Guidelines 117

5.2 Step-by-Step Design-Sample Problem 118

5.2.1 Step 1-Water Flux 119

5.2.2 Step 2-Membrane Selection 119

5.2.3 Step 3-Number of Elements Required 119

5.2.4 Step 4-System Array 120

5.3 Design Software 121

5.3.1 Water Application Value Engine (WAVE)- DuPont Water Solutions 123

5.3.2 IMSDesign-Hydranautics 131

5.3.3 Q+ Projection Software LGChem 135

5.4 Optimum Design Result for the Sample Problem 140

Symbols 141

Nomenclature 141

References 142

6 Design Considerations 143

6.1 Feed Water Source and Quality 143

6.1.1 Feed Water Source 143

6.1.2 Feed Water Quality and Guidelines 145

6.1.3 pH 147

6.1.3.1 pH Profile Through an RO System- Alkalinity Relationships 148

6.1.3.2 pH and Membrane Scaling Potential 148

6.1.3.3 pH Effects on Solute Rejection and Water Permeability 149

6.2 System Operations 149

6.2.1 Pressure 149

6.2.2 Compaction 151

6.2.3 Temperature 155

6.2.4 Balancing Flows 156

6.2.5 Designing for Variable Flow Demand 157

6.3 Existing RO System Design Considerations 157

6.3.1 Changing Membranes 157

6.3.1.1 Changing Membrane Area 158

6.3.1.2 Changing Membrane Types 158

6.3.1.3 Mixing Membrane Types 158

6.3.2 Increasing Recovery 159

6.3.3 Changing Feed Water Sources 160

6.3.4 Reducing Permeate Flow 161

Symbols 161

Nomenclature 161

References 162

7 RO Equipment 163

7.1 Basic RO Skid Components 163

7.1.1 Cartridge Filters 164

7.1.2 High Pressure Feed Pump 172

7.1.3 Pressure Vessels 177

7.2 Skid Design Considerations 181

7.2.1 Piping Materials of Construction 181

7.2.2 Feed Distribution Headers 183

7.2.3 Stage-by-Stage Cleaning 184

7.2.4 Sampling and Profiling/Probing Connections 187

7.2.5 Instrumentation 188

7.2.6 Controls and Data Acquisition/Analysis 193

7.2.6.1 System Control 193

7.2.6.2 Data Acquisition and Analysis 194

7.2.7 Designs for Variable Permeate Flow Demand 195

7.3 Energy Recovery Devices (ERDs) 196

7.3.1 ERD Types 196

7.3.2 ERD Applications for RO 197

7.3.2.1 Single-Stage RO 197

7.3.2.2 Multi-Stage RO 197

7.4 Clean-In-Place (CIP) Equipment 200

7.5 Mobile RO Equipment 203

Symbols 205

Nomenclature 205

References 206

Section III: Membrane Deposition and Degradation: Causes, Effects, and Mitigation via Pretreatment and Operations 207

8 Membrane Scaling 211

8.1 What is Membrane Scale? 211

8.2 Effects of Scale on Membrane Performance 212

8.3 Hardness Scales 215

8.3.1 Types of Hardness Scale 215

8.3.1.1 Carbonate-Based Hardness Scales 215

8.3.1.2 Sulfate-Based Hardness Scales 216

8.3.1.3 Other Calcium Scales: Calcium Phosphate and Calcium Fluoride 218

8.3.2 Mitigation of Hardness Scales 219

8.3.2.1 Chemical Pretreatment-Acid and Antiscalant Dosing 220

8.3.2.2 Non-Chemical Pretreatment-Sodium Softening and Nanofiltration 221

8.3.2.3 Operational Techniques-Flushing, Reverse Flow, and Closed Circuit Desalination 225

8.4 Silica Scale 226

8.4.1 Forms and Reactions of Silica 227

8.4.2 Factors Affecting Silica Scale Formation 228

8.4.3 Mitigation of Silica Scale 232

8.5 Struvite 236

8.5.1 What is Struvite? 236

8.5.2 Mitigation of Struvite 238

8.6 Scaling Mitigation Guidelines-Summary 239

Symbols 240

Nomenclature 240

References 240

9 Generalized Membrane Fouling 249

9.1 What is Membrane Fouling? 249

9.2 Classification and Measurement of Potential Foulants 250

9.2.1 Settleable and Supra-Colloidal Particulates 251

9.2.2 Colloids 252

9.2.2.1 Measurement of Colloids for RO Applications-Silt Density Index (SDI15) 252

9.2.2.2 Measure of Colloids-Modified Fouling Indices 255

9.2.2.3 Summary of Colloidal Fouling Indices 257

9.2.3 Natural Organic Material (NOM) 257

9.2.4 Other Organics 259

9.2.5 Other Foulants: Cationic Coagulants and Surfactants, and Silicone-Based Antifoams 259

9.2.6 Metals: Aluminum, Iron, Manganese, and Sulfur 259

9.2.6.1 Aluminum 259

9.2.6.2 Iron and Manganese 261

9.2.6.3 Hydrogen Sulfide 262

9.3 Effects of Fouling on Membrane Performance 265

9.3.1 Effects of Inorganic Foulants 266

9.3.1.1 Fouling with Larger Settleable and Supra-Colloidal Solids 266

9.3.1.2 Cake Layer Surface Fouling with Colloids 266

9.3.1.3 Feed Channel Fouling 268

9.3.1.4 Summary of Fouling Effects of Inorganic Particulates and Colloids 271

9.3.2 Effects of NOM and Other Organics 273

9.3.2.1 Effects of NOM-Humic Acids 273

9.3.2.2 Effects of Hydrocarbons 276

9.3.2.3 Effects of Cationic Coagulants and Surfactants 278

9.3.2.4 Summary of the Effects of Organic Surfactant and Antifoam Fouling on Membrane Performance 279

9.4 Pretreatment to Minimize Membrane Fouling 279

9.4.1 Primary Pretreatment-Clarification for Colloids and Organics (NOM) Removal 280

9.4.1.1 Coagulation 280

9.4.1.2 Flocculation 283

9.4.2 Pressure Filtration: Particles, SDI15 , and Organics Removal 283

9.4.2.1 Multimedia Pressure Filters: Suspended Solids Removal 283

9.4.2.2 Catalytic Filters: Soluble Iron, Manganese, and Hydrogen Sulfide Removal 287

9.4.2.3 Carbon Filters: TOC Removal 292

9.4.2.4 Walnut Shell Filters: Hydrocarbon Oil Removal 296

9.4.2.5 Cartridge Filters: What is Their Purpose? 299

9.4.3 Membrane Filtration Turbidity, SDI 15 , and Metal Hydroxide Removal 300

9.4.3.1 Membrane Materials and Elements 301

9.4.3.2 Membrane Filtration Operations- Polymeric Membranes 306

9.4.3.3 Membrane Filtration as Pretreatment for RO 311

9.4.4 Nanofiltration (NF): Organics and Color Removal 321

9.5 Feed Water Quality Guidelines to Minimize Membrane Fouling 323

Symbols 324

Nomenclature 324

References 326

10 RO...

Details
Erscheinungsjahr: 2023
Fachbereich: Bau- und Umwelttechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 672 S.
ISBN-13: 9781119724742
ISBN-10: 1119724740
Sprache: Englisch
Herstellernummer: 1W119724740
Einband: Gebunden
Autor: Kucera, Jane
Auflage: 3rd edition
Hersteller: Wiley
Maße: 231 x 155 x 40 mm
Von/Mit: Jane Kucera
Erscheinungsdatum: 31.05.2023
Gewicht: 1,064 kg
Artikel-ID: 119083426
Über den Autor

Jane Kucera is a senior technical consultant with Nalco Water, an Ecolab Company, where she designs water and wastewater use and reuse facilities. With over 40 years of experience, she has an MS in chemical engineering and has authored two books, both with Scrivener Publishing, the first and second editions of Reverse Osmosis, and the first and second editions of Desalination: Water from Water. She is active in the International Water Conference (IWC) and served as the 2023 Conference Chair. She received the 2021 Award of Merit offered by the Engineers' Society of Western Pennsylvania for her work in the water treatment industry and contributions to the IWC. Jane has a Teaching Credential from the State of California and taught chemistry at Linfield University, Los Angeles Valley College, and Central Oregon Community College.

Inhaltsverzeichnis

Preface to the 3rd Edition xxi

Acknowledgements xxiii

Section I: Fundamentals 1

1 Introduction to Reverse Osmosis: History, Challenges, and Future Directions 3

1.1 Introduction 3

1.2 A Brief History of Reverse Osmosis 5

1.2.1 Early Development 5

1.2.2 Advances 1970s-1980s 10

1.2.3 Advances from 1990s through the Early 2000s 12

1.3 Challenges and Prospects 14

1.3.1 Membrane Materials Development 15

1.3.2 Modification of Element Construction for Ultra-High Pressure or High-Temperature Operation 17

1.3.2.1 Ultra-High Pressure Spiral Wound RO 17

1.3.2.2 High-Temperature Elements 18

1.3.3 Optimization of RO Element Feed Channel Spacer 19

1.3.4 Other Advances and Future Requirements 23

1.4 Summary 26

Symbols 26

Nomenclature 27

References 27

2 Principles and Terminology 33

2.1 Semipermeable Membranes 33

2.2 Osmosis 33

2.3 Reverse Osmosis 35

2.4 Basic Performance Parameters: Recovery, Rejection, and Flux 35

2.4.1 Recovery and Concentration Factor 35

2.4.2 Rejection 38

2.4.3 Flux 41

2.4.3.1 Water Flux 41

2.4.3.2 Solute Flux 43

2.5 Filtration 43

2.5.1 Dead-End Filtration 43

2.5.2 Cross-Flow Filtration 43

2.6 Concentration Polarization 45

Symbols 47

Nomenclature 48

References 48

3 Membranes: Transport Models, Characterization, and Elements 51

3.1 Membrane Transport Models 51

3.1.1 Solution-Diffusion Transport Model 52

3.1.2 Modified Solution-Diffusion Transport Models 55

3.1.2.1 Solution-Diffusion Imperfection Model 55

3.1.2.2 Extended Solution-Diffusion Model 56

3.1.3 Pore-Based Transport Models 56

3.1.4 Models Based on Non-Equilibrium Thermodynamics 57

3.2 Polymeric Membranes 57

3.2.1 Cellulose Acetate 57

3.2.2 Linear Polyamide (Aramids) 61

3.2.3 Fully Aromatic Polyamide Composite Membranes 63

3.2.3.1 NS-100 Membrane 64

3.2.3.2 FT-30 Composite Membrane 67

3.2.4 Characterization of CA and Composite Polyamide Membranes 73

3.2.4.1 Surface Roughness 73

3.2.4.2 Zeta Potential (Surface Charge) 76

3.2.4.3 Hydrophilicity 76

3.2.5 Other Membrane Polymers 78

3.3 Membrane Elements 80

3.3.1 Plate and Frame Elements 81

3.3.2 Tubular Elements 82

3.3.3 Hollow Fine Fiber Elements 83

3.3.4 Spiral Wound Elements 84

3.4 Specialty Membranes and Elements 91

3.4.1 Specialty Membranes 91

3.4.1.1 Dry Membranes 91

3.4.1.2 Boron-Rejecting Membranes 92

3.4.2 Specialty Elements 93

3.4.2.1 Sanitary Elements 93

3.4.2.2 Disc Tube Elements 94

3.4.2.3 Vibratory Shear Enhanced Processing (VSEP) Elements and System 94

3.4.2.4 Ultra-High Pressure and High Temperature Elements 95

Symbols 95

Nomenclature 96

References 97

Section II: System Design and Engineering 103

4 Basic Design Arrangements and Concentration Polarization Guidelines 105

4.1 Arrays and Stages 105

4.1.1 Recovery per System Array 106

4.1.2 Element-By-Element Flow and Quality Distribution 108

4.1.3 Flux Guidelines 109

4.1.4 Cross-Flow Velocity Guidelines for Array Design 111

4.1.5 Concentrate Recycle 112

4.2 Passes 113

Symbols 115

Nomenclature 115

References 115

5 RO System Design Using Design Software 117

5.1 RO System Design Guidelines 117

5.2 Step-by-Step Design-Sample Problem 118

5.2.1 Step 1-Water Flux 119

5.2.2 Step 2-Membrane Selection 119

5.2.3 Step 3-Number of Elements Required 119

5.2.4 Step 4-System Array 120

5.3 Design Software 121

5.3.1 Water Application Value Engine (WAVE)- DuPont Water Solutions 123

5.3.2 IMSDesign-Hydranautics 131

5.3.3 Q+ Projection Software LGChem 135

5.4 Optimum Design Result for the Sample Problem 140

Symbols 141

Nomenclature 141

References 142

6 Design Considerations 143

6.1 Feed Water Source and Quality 143

6.1.1 Feed Water Source 143

6.1.2 Feed Water Quality and Guidelines 145

6.1.3 pH 147

6.1.3.1 pH Profile Through an RO System- Alkalinity Relationships 148

6.1.3.2 pH and Membrane Scaling Potential 148

6.1.3.3 pH Effects on Solute Rejection and Water Permeability 149

6.2 System Operations 149

6.2.1 Pressure 149

6.2.2 Compaction 151

6.2.3 Temperature 155

6.2.4 Balancing Flows 156

6.2.5 Designing for Variable Flow Demand 157

6.3 Existing RO System Design Considerations 157

6.3.1 Changing Membranes 157

6.3.1.1 Changing Membrane Area 158

6.3.1.2 Changing Membrane Types 158

6.3.1.3 Mixing Membrane Types 158

6.3.2 Increasing Recovery 159

6.3.3 Changing Feed Water Sources 160

6.3.4 Reducing Permeate Flow 161

Symbols 161

Nomenclature 161

References 162

7 RO Equipment 163

7.1 Basic RO Skid Components 163

7.1.1 Cartridge Filters 164

7.1.2 High Pressure Feed Pump 172

7.1.3 Pressure Vessels 177

7.2 Skid Design Considerations 181

7.2.1 Piping Materials of Construction 181

7.2.2 Feed Distribution Headers 183

7.2.3 Stage-by-Stage Cleaning 184

7.2.4 Sampling and Profiling/Probing Connections 187

7.2.5 Instrumentation 188

7.2.6 Controls and Data Acquisition/Analysis 193

7.2.6.1 System Control 193

7.2.6.2 Data Acquisition and Analysis 194

7.2.7 Designs for Variable Permeate Flow Demand 195

7.3 Energy Recovery Devices (ERDs) 196

7.3.1 ERD Types 196

7.3.2 ERD Applications for RO 197

7.3.2.1 Single-Stage RO 197

7.3.2.2 Multi-Stage RO 197

7.4 Clean-In-Place (CIP) Equipment 200

7.5 Mobile RO Equipment 203

Symbols 205

Nomenclature 205

References 206

Section III: Membrane Deposition and Degradation: Causes, Effects, and Mitigation via Pretreatment and Operations 207

8 Membrane Scaling 211

8.1 What is Membrane Scale? 211

8.2 Effects of Scale on Membrane Performance 212

8.3 Hardness Scales 215

8.3.1 Types of Hardness Scale 215

8.3.1.1 Carbonate-Based Hardness Scales 215

8.3.1.2 Sulfate-Based Hardness Scales 216

8.3.1.3 Other Calcium Scales: Calcium Phosphate and Calcium Fluoride 218

8.3.2 Mitigation of Hardness Scales 219

8.3.2.1 Chemical Pretreatment-Acid and Antiscalant Dosing 220

8.3.2.2 Non-Chemical Pretreatment-Sodium Softening and Nanofiltration 221

8.3.2.3 Operational Techniques-Flushing, Reverse Flow, and Closed Circuit Desalination 225

8.4 Silica Scale 226

8.4.1 Forms and Reactions of Silica 227

8.4.2 Factors Affecting Silica Scale Formation 228

8.4.3 Mitigation of Silica Scale 232

8.5 Struvite 236

8.5.1 What is Struvite? 236

8.5.2 Mitigation of Struvite 238

8.6 Scaling Mitigation Guidelines-Summary 239

Symbols 240

Nomenclature 240

References 240

9 Generalized Membrane Fouling 249

9.1 What is Membrane Fouling? 249

9.2 Classification and Measurement of Potential Foulants 250

9.2.1 Settleable and Supra-Colloidal Particulates 251

9.2.2 Colloids 252

9.2.2.1 Measurement of Colloids for RO Applications-Silt Density Index (SDI15) 252

9.2.2.2 Measure of Colloids-Modified Fouling Indices 255

9.2.2.3 Summary of Colloidal Fouling Indices 257

9.2.3 Natural Organic Material (NOM) 257

9.2.4 Other Organics 259

9.2.5 Other Foulants: Cationic Coagulants and Surfactants, and Silicone-Based Antifoams 259

9.2.6 Metals: Aluminum, Iron, Manganese, and Sulfur 259

9.2.6.1 Aluminum 259

9.2.6.2 Iron and Manganese 261

9.2.6.3 Hydrogen Sulfide 262

9.3 Effects of Fouling on Membrane Performance 265

9.3.1 Effects of Inorganic Foulants 266

9.3.1.1 Fouling with Larger Settleable and Supra-Colloidal Solids 266

9.3.1.2 Cake Layer Surface Fouling with Colloids 266

9.3.1.3 Feed Channel Fouling 268

9.3.1.4 Summary of Fouling Effects of Inorganic Particulates and Colloids 271

9.3.2 Effects of NOM and Other Organics 273

9.3.2.1 Effects of NOM-Humic Acids 273

9.3.2.2 Effects of Hydrocarbons 276

9.3.2.3 Effects of Cationic Coagulants and Surfactants 278

9.3.2.4 Summary of the Effects of Organic Surfactant and Antifoam Fouling on Membrane Performance 279

9.4 Pretreatment to Minimize Membrane Fouling 279

9.4.1 Primary Pretreatment-Clarification for Colloids and Organics (NOM) Removal 280

9.4.1.1 Coagulation 280

9.4.1.2 Flocculation 283

9.4.2 Pressure Filtration: Particles, SDI15 , and Organics Removal 283

9.4.2.1 Multimedia Pressure Filters: Suspended Solids Removal 283

9.4.2.2 Catalytic Filters: Soluble Iron, Manganese, and Hydrogen Sulfide Removal 287

9.4.2.3 Carbon Filters: TOC Removal 292

9.4.2.4 Walnut Shell Filters: Hydrocarbon Oil Removal 296

9.4.2.5 Cartridge Filters: What is Their Purpose? 299

9.4.3 Membrane Filtration Turbidity, SDI 15 , and Metal Hydroxide Removal 300

9.4.3.1 Membrane Materials and Elements 301

9.4.3.2 Membrane Filtration Operations- Polymeric Membranes 306

9.4.3.3 Membrane Filtration as Pretreatment for RO 311

9.4.4 Nanofiltration (NF): Organics and Color Removal 321

9.5 Feed Water Quality Guidelines to Minimize Membrane Fouling 323

Symbols 324

Nomenclature 324

References 326

10 RO...

Details
Erscheinungsjahr: 2023
Fachbereich: Bau- und Umwelttechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 672 S.
ISBN-13: 9781119724742
ISBN-10: 1119724740
Sprache: Englisch
Herstellernummer: 1W119724740
Einband: Gebunden
Autor: Kucera, Jane
Auflage: 3rd edition
Hersteller: Wiley
Maße: 231 x 155 x 40 mm
Von/Mit: Jane Kucera
Erscheinungsdatum: 31.05.2023
Gewicht: 1,064 kg
Artikel-ID: 119083426
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte