Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
47,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
Der Begriff der Splinefunktionen wurde von I. J. Schoenberg 1946 eingefUhrt. "Spline" ist der Name eines Zeichengerates, welches auf mechanischem Weg Interpolatio- aufgaben lost. Dieses Gerat besteht aus einer flexiblen, oft mehrere Meter langen Latte, die auf dem Zeichenbrett aufliegt und dort an bestimmten Stellen durch Gewichte festgehalten wird. Die Form, die die Latte annimmt, hangt von den Elastizitatseigenschaften der Latte abo -, " , , , , , , \ , \ \ I , , , ," -"', , , , , J::>----" , I I , I I I , , , , , , , , , , , " ) Fig. 1: Latteninterpo1ation Po1ynominterpo1ation _ - - - - - - - --0 Wir konnen natUrlich versuchen, ein mathematisches Modell fUr dieses mechanische Zeichengerat zu machen, d. h. die Gestalt solcher Kurven mathematisch zu erfassen. - 2 - Die Theorie der Balkenbiegung verlangt, dass die mittlere 2 K quadratische KrUmmung, ("strain energy", Spannungs- J energie) minimiert wird. Lasst sich die Kurve als Graph einer Funktion f auf dem Intervall [a,b] schreiben, so erhalt man mit dem bekannten Ausdruck fUr die Krlimmung K [f" (t) P --------------dt ~ min (1) t [1 +f' (t)2J5/2 a Statt dieses schwierige Extremalproblem zu losen, begnUgt man sich damit, (2) zu minimieren. Die Extremalfunktion fUr das Funktional (2) ist stUckweise ein kubisches Polynom; die Polyn- stUcke gehen an den Bruchstellen so glatt ineinander Uber, dass die Funktion zweimal stetig differenzierbar ist.
Der Begriff der Splinefunktionen wurde von I. J. Schoenberg 1946 eingefUhrt. "Spline" ist der Name eines Zeichengerates, welches auf mechanischem Weg Interpolatio- aufgaben lost. Dieses Gerat besteht aus einer flexiblen, oft mehrere Meter langen Latte, die auf dem Zeichenbrett aufliegt und dort an bestimmten Stellen durch Gewichte festgehalten wird. Die Form, die die Latte annimmt, hangt von den Elastizitatseigenschaften der Latte abo -, " , , , , , , \ , \ \ I , , , ," -"', , , , , J::>----" , I I , I I I , , , , , , , , , , , " ) Fig. 1: Latteninterpo1ation Po1ynominterpo1ation _ - - - - - - - --0 Wir konnen natUrlich versuchen, ein mathematisches Modell fUr dieses mechanische Zeichengerat zu machen, d. h. die Gestalt solcher Kurven mathematisch zu erfassen. - 2 - Die Theorie der Balkenbiegung verlangt, dass die mittlere 2 K quadratische KrUmmung, ("strain energy", Spannungs- J energie) minimiert wird. Lasst sich die Kurve als Graph einer Funktion f auf dem Intervall [a,b] schreiben, so erhalt man mit dem bekannten Ausdruck fUr die Krlimmung K [f" (t) P --------------dt ~ min (1) t [1 +f' (t)2J5/2 a Statt dieses schwierige Extremalproblem zu losen, begnUgt man sich damit, (2) zu minimieren. Die Extremalfunktion fUr das Funktional (2) ist stUckweise ein kubisches Polynom; die Polyn- stUcke gehen an den Bruchstellen so glatt ineinander Uber, dass die Funktion zweimal stetig differenzierbar ist.
Inhaltsverzeichnis
§1 Interpolation.- §2 Dividierte Differenzen.- §3 Approximationskraft der Polynome.- §4 Linienzüge.- §5 Polynomzüge.- §6 B-Splines.- §7 Duale Funktionale.- §8 Approximationsgrad von Splinefunktionen.- §9 Verfeinerung der Knotenfolge.- §10 Kollokation.- §11 "Optimale" Kollokation. Perfektsplines.- §12 Polynominterpolation im IRm.- §13 Multivariate B-Splines.- §14 Rekursionsformeln für multivariate B-Splines.- §15 Spezielle B-Splines.- §16 Approximationskraft der Polynomteppiche.- Literaturliste.
Details
Erscheinungsjahr: | 1990 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Recht, Sozialwissenschaften, Wirtschaft |
Rubrik: | Sozialwissenschaften |
Medium: | Taschenbuch |
Reihe: | Lectures in Mathematics. ETH Zürich |
Inhalt: |
vi
186 S. 1 s/w Illustr. 186 p. 1 illus. |
ISBN-13: | 9783764325145 |
ISBN-10: | 3764325143 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Boor, Carl de |
Hersteller: |
Birkhäuser Basel
Springer Basel AG Lectures in Mathematics. ETH Zürich |
Verantwortliche Person für die EU: | Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 244 x 170 x 11 mm |
Von/Mit: | Carl de Boor |
Erscheinungsdatum: | 01.09.1990 |
Gewicht: | 0,342 kg |
Inhaltsverzeichnis
§1 Interpolation.- §2 Dividierte Differenzen.- §3 Approximationskraft der Polynome.- §4 Linienzüge.- §5 Polynomzüge.- §6 B-Splines.- §7 Duale Funktionale.- §8 Approximationsgrad von Splinefunktionen.- §9 Verfeinerung der Knotenfolge.- §10 Kollokation.- §11 "Optimale" Kollokation. Perfektsplines.- §12 Polynominterpolation im IRm.- §13 Multivariate B-Splines.- §14 Rekursionsformeln für multivariate B-Splines.- §15 Spezielle B-Splines.- §16 Approximationskraft der Polynomteppiche.- Literaturliste.
Details
Erscheinungsjahr: | 1990 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Recht, Sozialwissenschaften, Wirtschaft |
Rubrik: | Sozialwissenschaften |
Medium: | Taschenbuch |
Reihe: | Lectures in Mathematics. ETH Zürich |
Inhalt: |
vi
186 S. 1 s/w Illustr. 186 p. 1 illus. |
ISBN-13: | 9783764325145 |
ISBN-10: | 3764325143 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Boor, Carl de |
Hersteller: |
Birkhäuser Basel
Springer Basel AG Lectures in Mathematics. ETH Zürich |
Verantwortliche Person für die EU: | Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 244 x 170 x 11 mm |
Von/Mit: | Carl de Boor |
Erscheinungsdatum: | 01.09.1990 |
Gewicht: | 0,342 kg |
Sicherheitshinweis