Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Statistical Inference via Data Science
A ModernDive into R and the Tidyverse
Taschenbuch von Chester Ismay (u. a.)
Sprache: Englisch

99,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Statistical Inference via Data Science: A ModernDive into R and the Tidyverse provides a pathway for learning about statistical inference using data science tools widely used in industry, academia, and government. It introduces the tidyverse suite of R packages, including the ggplot2 package for data visualization, and the dplyr package for data wrangling. After equipping readers with just enough of these data science tools to perform effective exploratory data analyses, the book covers traditional introductory statistics topics like confidence intervals, hypothesis testing, and multiple regression modeling, while focusing on visualization throughout.

Features:

¿ Assumes minimal prerequisites, notably, no prior calculus nor coding experience

¿ Motivates theory using real-world data, including all domestic flights leaving New York City in 2013, the Gapminder project, and the data journalism website, FiveThirtyEight.com

¿ Centers on simulation-based approaches to statistical inference rather than mathematical formulas

¿ Uses the infer package for "tidy" and transparent statistical inference to construct confidence intervals and conduct hypothesis tests via the bootstrap and permutation methods

¿ Provides all code and output embedded directly in the text; also available in the online version at moderndive.com

This book is intended for individuals who would like to simultaneously start developing their data science toolbox and start learning about the inferential and modeling tools used in much of modern-day research. The book can be used in methods and data science courses and first courses in statistics, at both the undergraduate and graduate levels.
Statistical Inference via Data Science: A ModernDive into R and the Tidyverse provides a pathway for learning about statistical inference using data science tools widely used in industry, academia, and government. It introduces the tidyverse suite of R packages, including the ggplot2 package for data visualization, and the dplyr package for data wrangling. After equipping readers with just enough of these data science tools to perform effective exploratory data analyses, the book covers traditional introductory statistics topics like confidence intervals, hypothesis testing, and multiple regression modeling, while focusing on visualization throughout.

Features:

¿ Assumes minimal prerequisites, notably, no prior calculus nor coding experience

¿ Motivates theory using real-world data, including all domestic flights leaving New York City in 2013, the Gapminder project, and the data journalism website, FiveThirtyEight.com

¿ Centers on simulation-based approaches to statistical inference rather than mathematical formulas

¿ Uses the infer package for "tidy" and transparent statistical inference to construct confidence intervals and conduct hypothesis tests via the bootstrap and permutation methods

¿ Provides all code and output embedded directly in the text; also available in the online version at moderndive.com

This book is intended for individuals who would like to simultaneously start developing their data science toolbox and start learning about the inferential and modeling tools used in much of modern-day research. The book can be used in methods and data science courses and first courses in statistics, at both the undergraduate and graduate levels.
Über den Autor

¿ Chester Ismay is a Data Science Evangelist for DataRobot and is based in Portland, Oregon, USA.

¿Albert Y. Kim is an Assistant Professor of Statistical and Data Sciences at Smith College in Northampton, Massachusetts, USA.

Inhaltsverzeichnis

Preface
1 Getting Started with Data in R
I Data Science via the tidyverse
2 Data Visualization
3 Data Wrangling
4 Data Importing & "Tidy" Data
II Data Modeling via moderndive
5 Basic Regression
6 Multiple Regression
III Statistical Inference via infer
7 Sampling
8 Bootstrapping & Confidence Intervals
9 Hypothesis Testing
10 Inference for Regression
11 Tell the Story with Data
Appendix
A Statistical Background
B Information about R packages Used
Bibliography
Index

Details
Erscheinungsjahr: 2019
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9780367409821
ISBN-10: 0367409828
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Ismay, Chester
Kim, Albert Y.
Hersteller: Chapman and Hall/CRC
Maße: 254 x 178 x 25 mm
Von/Mit: Chester Ismay (u. a.)
Erscheinungsdatum: 13.12.2019
Gewicht: 0,862 kg
Artikel-ID: 127204160
Über den Autor

¿ Chester Ismay is a Data Science Evangelist for DataRobot and is based in Portland, Oregon, USA.

¿Albert Y. Kim is an Assistant Professor of Statistical and Data Sciences at Smith College in Northampton, Massachusetts, USA.

Inhaltsverzeichnis

Preface
1 Getting Started with Data in R
I Data Science via the tidyverse
2 Data Visualization
3 Data Wrangling
4 Data Importing & "Tidy" Data
II Data Modeling via moderndive
5 Basic Regression
6 Multiple Regression
III Statistical Inference via infer
7 Sampling
8 Bootstrapping & Confidence Intervals
9 Hypothesis Testing
10 Inference for Regression
11 Tell the Story with Data
Appendix
A Statistical Background
B Information about R packages Used
Bibliography
Index

Details
Erscheinungsjahr: 2019
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9780367409821
ISBN-10: 0367409828
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Ismay, Chester
Kim, Albert Y.
Hersteller: Chapman and Hall/CRC
Maße: 254 x 178 x 25 mm
Von/Mit: Chester Ismay (u. a.)
Erscheinungsdatum: 13.12.2019
Gewicht: 0,862 kg
Artikel-ID: 127204160
Warnhinweis