Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Statistical Learning with Math and Python
100 Exercises for Building Logic
Taschenbuch von Joe Suzuki
Sprache: Englisch

43,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building Python programs.

As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning.

Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercises in each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter.

This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building Python programs.

As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning.

Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercises in each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter.

This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.
Über den Autor
Joe Suzuki is a professor of statistics at Osaka University, Japan. He has published more than 100 papers on graphical models and information theory.
Zusammenfassung

Equips readers with the logic required for machine learning and data science via math and programming

Provides in-depth understanding of Python source programs rather than how to use ready-made Python packages

Written in an easy-to-follow and self-contained style

Inhaltsverzeichnis
Chapter 1: Linear Algebra.- Chapter 2: Linear Regression.- Chapter 3: Classification.- Chapter 4: Resampling.- Chapter 5: Information Criteria.- Chapter 6: Regularization.- Chapter 7: Nonlinear Regression.- Chapter 8: Decision Trees.- Chapter 9: Support Vector Machine.- Chapter 10: Unsupervised Learning.
Details
Erscheinungsjahr: 2021
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xi
256 S.
1 s/w Illustr.
256 p. 1 illus.
ISBN-13: 9789811578762
ISBN-10: 9811578761
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Suzuki, Joe
Auflage: 1st ed. 2021
Hersteller: Springer Singapore
Springer Nature Singapore
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 15 mm
Von/Mit: Joe Suzuki
Erscheinungsdatum: 04.08.2021
Gewicht: 0,417 kg
Artikel-ID: 118747037
Über den Autor
Joe Suzuki is a professor of statistics at Osaka University, Japan. He has published more than 100 papers on graphical models and information theory.
Zusammenfassung

Equips readers with the logic required for machine learning and data science via math and programming

Provides in-depth understanding of Python source programs rather than how to use ready-made Python packages

Written in an easy-to-follow and self-contained style

Inhaltsverzeichnis
Chapter 1: Linear Algebra.- Chapter 2: Linear Regression.- Chapter 3: Classification.- Chapter 4: Resampling.- Chapter 5: Information Criteria.- Chapter 6: Regularization.- Chapter 7: Nonlinear Regression.- Chapter 8: Decision Trees.- Chapter 9: Support Vector Machine.- Chapter 10: Unsupervised Learning.
Details
Erscheinungsjahr: 2021
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xi
256 S.
1 s/w Illustr.
256 p. 1 illus.
ISBN-13: 9789811578762
ISBN-10: 9811578761
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Suzuki, Joe
Auflage: 1st ed. 2021
Hersteller: Springer Singapore
Springer Nature Singapore
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 15 mm
Von/Mit: Joe Suzuki
Erscheinungsdatum: 04.08.2021
Gewicht: 0,417 kg
Artikel-ID: 118747037
Sicherheitshinweis