149,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Haiping Huang
Dr. Haiping Huang received his Ph.D. degree in theoretical physics from the Institute of Theoretical Physics, the Chinese Academy of Sciences. He works as an associate professor at the School of Physics, Sun Yat-sen University, China. His research interests include the origin of the computational hardness of the binary perceptron model, the theory of dimension reduction in deep neural networks, and inherent symmetry breaking in unsupervised learning. In 2021, he was awarded Excellent Young Scientists Fund by National Natural Science Foundation of China.
Presents major theoretical tools for the analysis of neural networks
Provides concrete examples for the use of the theories in neural networks
Bridges old tools and frontiers in the theoretical development of neural networks
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Theoretische Physik |
Genre: | Importe, Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xviii
296 S. 22 s/w Illustr. 40 farbige Illustr. 296 p. 62 illus. 40 illus. in color. |
ISBN-13: | 9789811675720 |
ISBN-10: | 9811675724 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Huang, Haiping |
Auflage: | 1st edition 2021 |
Hersteller: |
Springer Singapore
Springer Nature Singapore |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 18 mm |
Von/Mit: | Haiping Huang |
Erscheinungsdatum: | 06.01.2023 |
Gewicht: | 0,482 kg |
Haiping Huang
Dr. Haiping Huang received his Ph.D. degree in theoretical physics from the Institute of Theoretical Physics, the Chinese Academy of Sciences. He works as an associate professor at the School of Physics, Sun Yat-sen University, China. His research interests include the origin of the computational hardness of the binary perceptron model, the theory of dimension reduction in deep neural networks, and inherent symmetry breaking in unsupervised learning. In 2021, he was awarded Excellent Young Scientists Fund by National Natural Science Foundation of China.
Presents major theoretical tools for the analysis of neural networks
Provides concrete examples for the use of the theories in neural networks
Bridges old tools and frontiers in the theoretical development of neural networks
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Theoretische Physik |
Genre: | Importe, Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xviii
296 S. 22 s/w Illustr. 40 farbige Illustr. 296 p. 62 illus. 40 illus. in color. |
ISBN-13: | 9789811675720 |
ISBN-10: | 9811675724 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Huang, Haiping |
Auflage: | 1st edition 2021 |
Hersteller: |
Springer Singapore
Springer Nature Singapore |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 18 mm |
Von/Mit: | Haiping Huang |
Erscheinungsdatum: | 06.01.2023 |
Gewicht: | 0,482 kg |