163,50 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Updated and revised to include more modern information, along with additional three chapters on Surfactants in Biology and Biotechnology, Nanotechnology and Surfactants, and Molecular Modeling with Surfactant Systems, this is the premier text on the properties and applications of surfactants.
This book provides an easy-to-read, user-friendly resource for industrial chemists and a text for classroom use, and is an unparalleled tool for understanding and applying the latest information on surfactants. Problems are included at the end of each chapter to enhance the reader's understanding, along with many tables of data that are not compiled elsewhere. Only the minimum mathematics is used in the explanation of topics to make it easy-to-understand and very user friendly.
Updated and revised to include more modern information, along with additional three chapters on Surfactants in Biology and Biotechnology, Nanotechnology and Surfactants, and Molecular Modeling with Surfactant Systems, this is the premier text on the properties and applications of surfactants.
This book provides an easy-to-read, user-friendly resource for industrial chemists and a text for classroom use, and is an unparalleled tool for understanding and applying the latest information on surfactants. Problems are included at the end of each chapter to enhance the reader's understanding, along with many tables of data that are not compiled elsewhere. Only the minimum mathematics is used in the explanation of topics to make it easy-to-understand and very user friendly.
Milton J. Rosen, PhD, is Professor Emeritus of Chemistry at Brooklyn College of the City University of New York. He is also the Director (ret.) of the university's Surfactant Research Institute, a pioneering organization that he founded in 1987.
Joy T. Kunjappu, PhD, DSc, is a chemistry educator, consultant, and former Adjunct Professor at Columbia University and Brooklyn College. His areas of research interest include surfactant and surface science, organic chemistry, and photochemistry.
Preface xv
1 Characteristic Features of Surfactants 1
I. Conditions under which Interfacial Phenomena and Surfactants Become Significant 2
II. General Structural Features and Behavior of Surfactants 2
A. General Use of Charge Types 4
B. General Effects of the Nature of the Hydrophobic Group 5
1. Length of the Hydrophobic Group 5
2. Branching, Unsaturation 5
3. Aromatic Nucleus 5
4. Polyoxypropylene or Polyoxyethylene (POE) Units 5
5. Perfluoroalkyl or Polysiloxane Group 6
III. Environmental Effects of Surfactants 6
A. Surfactant Biodegradability 6
B. Surfactant Toxicity; Skin Irritation 7
IV. Characteristic Features and Uses of Commercially Available Surfactants 8
A. Anionics 9
1. Carboxylic Acid Salts 9
2. Sulfonic Acid Salts 11
3. Sulfuric Acid Ester Salts 15
4. Phosphoric and Polyphosphoric Acid Esters 17
5. Fluorinated Anionics 18
B. Cationics 19
1. Long-Chain Amines and Their Salts 20
2. Acylated Diamines and Polyamines and Their Salts 20
3. Quaternary Ammonium Salts 20
4. Polyoxyethylenated Long-Chain Amines 22
5. Quaternized POE Long-Chain Amines 22
6. Amine Oxides 22
C. Nonionics 23
1. Polyoxyethylenated Alkylphenols, Alkylphenol "Ethoxylates" 23
2. Polyoxyethylenated Straight-Chain Alcohols 24
3. Polyoxyethylenated Polyoxypropylene Glycols 25
4. Polyoxyethylenated Mercaptans 25
5. Long-Chain Carboxylic Acid Esters 26
6. Alkanolamine "Condensates," Alkanolamides 27
7. Tertiary Acetylenic Glycols and Their "Ethoxylates" 28
8. Polyoxyethylenated Silicones 28
9. N-Alkylpyrrolid(in)ones 29
10. Alkylpolyglycosides 29
D. Zwitterionics 30
1. pH-Sensitive Zwitterionics 30
2. pH-Insensitive Zwitterionics 32
E. Newer Surfactants Based Upon Renewable Raw Materials 32
1. ¿-Sulfofatty Acid Methyl Esters (SME) 32
2. Acylated Aminoacids 33
3. Nopol Alkoxylates 34
V. Some Useful Generalizations 34
VI. Electronic Searching of the Surfactant Literature 35
References 36
Problems 37
2 Adsorption of Surface-Active Agents at Interfaces: The Electrical Double Layer 39
I. The Electrical Double Layer 40
II. Adsorption at the Solid-Liquid Interface 44
A. Mechanisms of Adsorption and Aggregation 44
B. Adsorption Isotherms 48
1. The Langmuir Adsorption Isotherm 50
C. Adsorption from Aqueous Solution onto Adsorbents with Strongly Charged Sites 53
1. Ionic Surfactants 53
2. Nonionic Surfactants 59
3. pH Change 59
4. Ionic Strength 60
5. Temperature 60
D. Adsorption from Aqueous Solution onto Nonpolar, Hydrophobic Adsorbents 60
E. Adsorption from Aqueous Solution onto Polar Adsorbents without Strongly Charged Sites 63
F. Effects of Adsorption from Aqueous Solution on the Surface Properties of the Solid Adsorbent 63
1. Substrates with Strongly Charged Sites 63
2. Nonpolar Adsorbents 65
G. Adsorption from Nonaqueous Solution 65
H. Determination of the Specific Surface Areas of Solids 66
III. Adsorption at the Liquid-Gas (L/G) and Liquid-Liquid (L/L) Interfaces 66
A. The Gibbs Adsorption Equation 67
B. Calculation of Surface Concentrations and Area Per Molecule at the Interface by Use of the Gibbs Equation 69
C. Effectiveness of Adsorption at the L/G and L/L Interfaces 71
D. The Szyszkowski, Langmuir, and Frumkin Equations 99
E. Efficiency of Adsorption at the L/G and L/L Interfaces 100
F. Calculation of Thermodynamic Parameters of Adsorption at the L/G and L/L Interfaces 104
G. Adsorption from Mixtures of Two Surfactants 113
References 115
Problems 121
3 Micelle Formation by Surfactants 123
I. The Critical Micelle Concentration (CMC) 123
II. Micellar Structure and Shape 126
A. The Packing Parameter 126
B. Surfactant Structure and Micellar Shape 127
C. Liquid Crystals 128
D. Rheology of Surfactant Solutions 131
III. Micellar Aggregation Numbers 132
IV. Factors Affecting the Value of the CMC in Aqueous Media 140
A. Structure of the Surfactant 140
1. The Hydrophobic Group 140
2. The Hydrophilic Group 158
3. The Counterion in Ionic Surfactants; Degree of Binding to the Micelle 160
4. Empirical Equations 164
B. Electrolyte 166
C. Organic Additives 167
1. Class I Materials 167
2. Class II Materials 168
D. The Presence of a Second Liquid Phase 169
E. Temperature 170
V. Micellization in Aqueous Solution and Adsorption at the Aqueous Solution-Air or Aqueous Solution-Hydrocarbon Interface 170
A. The CMC/C20 Ratio 171
VI. CMCs in Nonaqueous Media 179
VII. Equations for the CMC Based on Theoretical Considerations 180
VIII. Thermodynamic Parameters of Micellization 184
IX. Mixed Micelle Formation in Mixtures of Two Surfactants 191
References 192
Problems 200
4 Solubilization by Solutions of Surfactants: Micellar Catalysis 202
I. Solubilization in Aqueous Media 203
A. Locus of Solubilization 203
B. Factors Determining the Extent of Solubilization 206
1. Structure of the Surfactant 207
2. Structure of the Solubilizate 209
3. Effect of Electrolyte 209
4. Effect of Monomeric Organic Additives 210
5. Effect of Polymeric Organic Additives 211
6. Mixed Anionic-Nonionic Micelles 212
7. Effect of Temperature 212
8. Hydrotropy 214
C. Rate of Solubilization 214
II. Solubilization in Nonaqueous Solvents 215
A. Secondary Solubilization 218
III. Some Effects of Solubilization 218
A. Effect of Solubilization on Micellar Structure 218
B. Change in the CPs of Aqueous Solutions of Nonionic Surfactants 219
C. Reduction of the CMC 223
D. Miscellaneous Effects of Solubilization 223
IV. Micellar Catalysis 224
References 229
Problems 233
5 Reduction of Surface and Interfacial Tension by Surfactants 235
I. Efficiency in Surface Tension Reduction 239
II. Effectiveness in Surface Tension Reduction 241
A. The Krafft Point 241
B. Interfacial Parameter and Chemical Structural Effects 242
III. Liquid-Liquid Interfacial Tension Reduction 256
A. Ultralow Interfacial Tension 257
IV. Dynamic Surface Tension Reduction 262
A. Dynamic Regions 262
B. Apparent Diffusion Coefficients of Surfactants 265
References 266
Problems 270
6 Wetting and Its Modification by Surfactants 272
I. Wetting Equilibria 272
A. Spreading Wetting 273
1. The Contact Angle 275
2. Measurement of the Contact Angle 277
B. Adhesional Wetting 278
C. Immersional Wetting 281
D. Adsorption and Wetting 282
II. Modification of Wetting by Surfactants 285
A. General Considerations 285
B. Hard Surface (Equilibrium) Wetting 286
C. Textile (Nonequilibrium) Wetting 288
D. Effect of Additives 299
III. Synergy in Wetting by Mixtures of Surfactants 300
IV. Superspreading (Superwetting) 300
References 303
Problems 306
7 Foaming and Antifoaming by Aqueous Solutions of Surfactants 308
I. Theories of Film Elasticity 309
II. Factors Determining Foam Persistence 313
A. Drainage of Liquid in the Lamellae 313
B. Diffusion of Gas through the Lamellae 314
C. Surface Viscosity 315
D. The Existence and Thickness of the Electrical Double Layer 315
III. The Relation of Surfactant Chemical Structure to Foaming in Aqueous Solution 316
A. Efficiency as a Foaming Agent 317
B. Effectiveness as a Foaming Agent 317
C. Low-Foaming Surfactants 325
IV. Foam-Stabilizing Organic Additives 326
V. Antifoaming 329
VI. Foaming of Aqueous Dispersions of Finely Divided Solids 330
VII. Foaming and Antifoaming in Organic Media 331
References 332
Problems 334
8 Emulsification by Surfactants 336
I. Macroemulsions 337
A. Formation 338
B. Factors Determining Stability 338
1. Physical Nature of the Interfacial Film 339
2. Existence of an Electrical or Steric Barrier to Coalescence on the Dispersed Droplets 341
3. Viscosity of the Continuous Phase 342
4. Size Distribution of Droplets 342
5. Phase Volume Ratio 343
6. Temperature 343
C. Inversion 345
D. Multiple Emulsions 345
E. Theories of Emulsion Type 347
1. Qualitative Theories 347
2. Kinetic Theory of Macroemulsion Type 349
II. Microemulsions 350
III. Nanoemulsions 354
IV. Selection of Surfactants as Emulsifying Agents 355
A. The Hydrophile-Lipophile Balance (HLB) Method 356
B. The PIT Method 358
C. The Hydrophilic Lipophilic Deviation (HLD) Method 361
V. Demulsification 361
References 363
Problems 366
9 Dispersion and Aggregation of Solids in Liquid Media by Surfactants 368
I. Interparticle Forces 368
A. Soft (Electrostatic) and van der Waals Forces: Derjaguin and Landau and Verwey and Overbeek (DLVO) Theory 369
1. Limitations of the DLVO Theory 374
B. Steric Forces 376
II. Role of the Surfactant in the Dispersion Process 378
A. Wetting of the Powder 378
B. Deaggregation of Fragmentation of Particle Clusters 379
C. Prevention of Reaggregation 379
III....
Erscheinungsjahr: | 2012 |
---|---|
Genre: | Chemie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 616 S. |
ISBN-13: | 9780470541944 |
ISBN-10: | 0470541946 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Rosen, Milton J
Kunjappu, Joy T |
Auflage: | 4th Revised, Updated edition |
Hersteller: |
Wiley
John Wiley & Sons |
Maße: | 240 x 161 x 37 mm |
Von/Mit: | Milton J Rosen (u. a.) |
Erscheinungsdatum: | 06.03.2012 |
Gewicht: | 1,085 kg |
Milton J. Rosen, PhD, is Professor Emeritus of Chemistry at Brooklyn College of the City University of New York. He is also the Director (ret.) of the university's Surfactant Research Institute, a pioneering organization that he founded in 1987.
Joy T. Kunjappu, PhD, DSc, is a chemistry educator, consultant, and former Adjunct Professor at Columbia University and Brooklyn College. His areas of research interest include surfactant and surface science, organic chemistry, and photochemistry.
Preface xv
1 Characteristic Features of Surfactants 1
I. Conditions under which Interfacial Phenomena and Surfactants Become Significant 2
II. General Structural Features and Behavior of Surfactants 2
A. General Use of Charge Types 4
B. General Effects of the Nature of the Hydrophobic Group 5
1. Length of the Hydrophobic Group 5
2. Branching, Unsaturation 5
3. Aromatic Nucleus 5
4. Polyoxypropylene or Polyoxyethylene (POE) Units 5
5. Perfluoroalkyl or Polysiloxane Group 6
III. Environmental Effects of Surfactants 6
A. Surfactant Biodegradability 6
B. Surfactant Toxicity; Skin Irritation 7
IV. Characteristic Features and Uses of Commercially Available Surfactants 8
A. Anionics 9
1. Carboxylic Acid Salts 9
2. Sulfonic Acid Salts 11
3. Sulfuric Acid Ester Salts 15
4. Phosphoric and Polyphosphoric Acid Esters 17
5. Fluorinated Anionics 18
B. Cationics 19
1. Long-Chain Amines and Their Salts 20
2. Acylated Diamines and Polyamines and Their Salts 20
3. Quaternary Ammonium Salts 20
4. Polyoxyethylenated Long-Chain Amines 22
5. Quaternized POE Long-Chain Amines 22
6. Amine Oxides 22
C. Nonionics 23
1. Polyoxyethylenated Alkylphenols, Alkylphenol "Ethoxylates" 23
2. Polyoxyethylenated Straight-Chain Alcohols 24
3. Polyoxyethylenated Polyoxypropylene Glycols 25
4. Polyoxyethylenated Mercaptans 25
5. Long-Chain Carboxylic Acid Esters 26
6. Alkanolamine "Condensates," Alkanolamides 27
7. Tertiary Acetylenic Glycols and Their "Ethoxylates" 28
8. Polyoxyethylenated Silicones 28
9. N-Alkylpyrrolid(in)ones 29
10. Alkylpolyglycosides 29
D. Zwitterionics 30
1. pH-Sensitive Zwitterionics 30
2. pH-Insensitive Zwitterionics 32
E. Newer Surfactants Based Upon Renewable Raw Materials 32
1. ¿-Sulfofatty Acid Methyl Esters (SME) 32
2. Acylated Aminoacids 33
3. Nopol Alkoxylates 34
V. Some Useful Generalizations 34
VI. Electronic Searching of the Surfactant Literature 35
References 36
Problems 37
2 Adsorption of Surface-Active Agents at Interfaces: The Electrical Double Layer 39
I. The Electrical Double Layer 40
II. Adsorption at the Solid-Liquid Interface 44
A. Mechanisms of Adsorption and Aggregation 44
B. Adsorption Isotherms 48
1. The Langmuir Adsorption Isotherm 50
C. Adsorption from Aqueous Solution onto Adsorbents with Strongly Charged Sites 53
1. Ionic Surfactants 53
2. Nonionic Surfactants 59
3. pH Change 59
4. Ionic Strength 60
5. Temperature 60
D. Adsorption from Aqueous Solution onto Nonpolar, Hydrophobic Adsorbents 60
E. Adsorption from Aqueous Solution onto Polar Adsorbents without Strongly Charged Sites 63
F. Effects of Adsorption from Aqueous Solution on the Surface Properties of the Solid Adsorbent 63
1. Substrates with Strongly Charged Sites 63
2. Nonpolar Adsorbents 65
G. Adsorption from Nonaqueous Solution 65
H. Determination of the Specific Surface Areas of Solids 66
III. Adsorption at the Liquid-Gas (L/G) and Liquid-Liquid (L/L) Interfaces 66
A. The Gibbs Adsorption Equation 67
B. Calculation of Surface Concentrations and Area Per Molecule at the Interface by Use of the Gibbs Equation 69
C. Effectiveness of Adsorption at the L/G and L/L Interfaces 71
D. The Szyszkowski, Langmuir, and Frumkin Equations 99
E. Efficiency of Adsorption at the L/G and L/L Interfaces 100
F. Calculation of Thermodynamic Parameters of Adsorption at the L/G and L/L Interfaces 104
G. Adsorption from Mixtures of Two Surfactants 113
References 115
Problems 121
3 Micelle Formation by Surfactants 123
I. The Critical Micelle Concentration (CMC) 123
II. Micellar Structure and Shape 126
A. The Packing Parameter 126
B. Surfactant Structure and Micellar Shape 127
C. Liquid Crystals 128
D. Rheology of Surfactant Solutions 131
III. Micellar Aggregation Numbers 132
IV. Factors Affecting the Value of the CMC in Aqueous Media 140
A. Structure of the Surfactant 140
1. The Hydrophobic Group 140
2. The Hydrophilic Group 158
3. The Counterion in Ionic Surfactants; Degree of Binding to the Micelle 160
4. Empirical Equations 164
B. Electrolyte 166
C. Organic Additives 167
1. Class I Materials 167
2. Class II Materials 168
D. The Presence of a Second Liquid Phase 169
E. Temperature 170
V. Micellization in Aqueous Solution and Adsorption at the Aqueous Solution-Air or Aqueous Solution-Hydrocarbon Interface 170
A. The CMC/C20 Ratio 171
VI. CMCs in Nonaqueous Media 179
VII. Equations for the CMC Based on Theoretical Considerations 180
VIII. Thermodynamic Parameters of Micellization 184
IX. Mixed Micelle Formation in Mixtures of Two Surfactants 191
References 192
Problems 200
4 Solubilization by Solutions of Surfactants: Micellar Catalysis 202
I. Solubilization in Aqueous Media 203
A. Locus of Solubilization 203
B. Factors Determining the Extent of Solubilization 206
1. Structure of the Surfactant 207
2. Structure of the Solubilizate 209
3. Effect of Electrolyte 209
4. Effect of Monomeric Organic Additives 210
5. Effect of Polymeric Organic Additives 211
6. Mixed Anionic-Nonionic Micelles 212
7. Effect of Temperature 212
8. Hydrotropy 214
C. Rate of Solubilization 214
II. Solubilization in Nonaqueous Solvents 215
A. Secondary Solubilization 218
III. Some Effects of Solubilization 218
A. Effect of Solubilization on Micellar Structure 218
B. Change in the CPs of Aqueous Solutions of Nonionic Surfactants 219
C. Reduction of the CMC 223
D. Miscellaneous Effects of Solubilization 223
IV. Micellar Catalysis 224
References 229
Problems 233
5 Reduction of Surface and Interfacial Tension by Surfactants 235
I. Efficiency in Surface Tension Reduction 239
II. Effectiveness in Surface Tension Reduction 241
A. The Krafft Point 241
B. Interfacial Parameter and Chemical Structural Effects 242
III. Liquid-Liquid Interfacial Tension Reduction 256
A. Ultralow Interfacial Tension 257
IV. Dynamic Surface Tension Reduction 262
A. Dynamic Regions 262
B. Apparent Diffusion Coefficients of Surfactants 265
References 266
Problems 270
6 Wetting and Its Modification by Surfactants 272
I. Wetting Equilibria 272
A. Spreading Wetting 273
1. The Contact Angle 275
2. Measurement of the Contact Angle 277
B. Adhesional Wetting 278
C. Immersional Wetting 281
D. Adsorption and Wetting 282
II. Modification of Wetting by Surfactants 285
A. General Considerations 285
B. Hard Surface (Equilibrium) Wetting 286
C. Textile (Nonequilibrium) Wetting 288
D. Effect of Additives 299
III. Synergy in Wetting by Mixtures of Surfactants 300
IV. Superspreading (Superwetting) 300
References 303
Problems 306
7 Foaming and Antifoaming by Aqueous Solutions of Surfactants 308
I. Theories of Film Elasticity 309
II. Factors Determining Foam Persistence 313
A. Drainage of Liquid in the Lamellae 313
B. Diffusion of Gas through the Lamellae 314
C. Surface Viscosity 315
D. The Existence and Thickness of the Electrical Double Layer 315
III. The Relation of Surfactant Chemical Structure to Foaming in Aqueous Solution 316
A. Efficiency as a Foaming Agent 317
B. Effectiveness as a Foaming Agent 317
C. Low-Foaming Surfactants 325
IV. Foam-Stabilizing Organic Additives 326
V. Antifoaming 329
VI. Foaming of Aqueous Dispersions of Finely Divided Solids 330
VII. Foaming and Antifoaming in Organic Media 331
References 332
Problems 334
8 Emulsification by Surfactants 336
I. Macroemulsions 337
A. Formation 338
B. Factors Determining Stability 338
1. Physical Nature of the Interfacial Film 339
2. Existence of an Electrical or Steric Barrier to Coalescence on the Dispersed Droplets 341
3. Viscosity of the Continuous Phase 342
4. Size Distribution of Droplets 342
5. Phase Volume Ratio 343
6. Temperature 343
C. Inversion 345
D. Multiple Emulsions 345
E. Theories of Emulsion Type 347
1. Qualitative Theories 347
2. Kinetic Theory of Macroemulsion Type 349
II. Microemulsions 350
III. Nanoemulsions 354
IV. Selection of Surfactants as Emulsifying Agents 355
A. The Hydrophile-Lipophile Balance (HLB) Method 356
B. The PIT Method 358
C. The Hydrophilic Lipophilic Deviation (HLD) Method 361
V. Demulsification 361
References 363
Problems 366
9 Dispersion and Aggregation of Solids in Liquid Media by Surfactants 368
I. Interparticle Forces 368
A. Soft (Electrostatic) and van der Waals Forces: Derjaguin and Landau and Verwey and Overbeek (DLVO) Theory 369
1. Limitations of the DLVO Theory 374
B. Steric Forces 376
II. Role of the Surfactant in the Dispersion Process 378
A. Wetting of the Powder 378
B. Deaggregation of Fragmentation of Particle Clusters 379
C. Prevention of Reaggregation 379
III....
Erscheinungsjahr: | 2012 |
---|---|
Genre: | Chemie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 616 S. |
ISBN-13: | 9780470541944 |
ISBN-10: | 0470541946 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Rosen, Milton J
Kunjappu, Joy T |
Auflage: | 4th Revised, Updated edition |
Hersteller: |
Wiley
John Wiley & Sons |
Maße: | 240 x 161 x 37 mm |
Von/Mit: | Milton J Rosen (u. a.) |
Erscheinungsdatum: | 06.03.2012 |
Gewicht: | 1,085 kg |