Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Testing Statistical Hypotheses
Buch von Joseph P. Romano (u. a.)
Sprache: Englisch

97,60 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Testing Statistical Hypotheses, 4th Edition updates and expands upon the classic graduate text, now a two-volume work. The first volume covers finite-sample theory, while the second volume discusses large-sample theory. A definitive resource for graduate students and researchers alike, this work grows to include new topics of current relevance. New additions include an expanded treatment of multiple hypothesis testing, a new section on extensions of the Central Limit Theorem, coverage of high-dimensional testing, expanded discussions of permutation and randomization tests, coverage of testing moment inequalities, and many new problems throughout the text.
Testing Statistical Hypotheses, 4th Edition updates and expands upon the classic graduate text, now a two-volume work. The first volume covers finite-sample theory, while the second volume discusses large-sample theory. A definitive resource for graduate students and researchers alike, this work grows to include new topics of current relevance. New additions include an expanded treatment of multiple hypothesis testing, a new section on extensions of the Central Limit Theorem, coverage of high-dimensional testing, expanded discussions of permutation and randomization tests, coverage of testing moment inequalities, and many new problems throughout the text.
Über den Autor

E.L. Lehmann (1917 - 2009) was an American statistician and professor of statistics at the University of California, Berkeley. He made significant contributions to nonparametric hypothesis testing, and he is one of the eponyms of the Lehmann-Scheffé theorem and of the Hodges-Lehmann estimator. Dr. Lehmann was a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands and the University of Chicago. He was the author of Elements of Large-Sample Theory (Springer 1999) and Theory of Point Estimation, Second Edition (Springer 1998, with George Casella).

Joseph P. Romano has been on faculty in the Statistics Department at Stanford since 1986. Since 2007, he has held a joint professorship appointment in both Statistics and Economics. He is a coauthor of three books, as well as over 100 journal articles. Dr. Romano was named NOGLSTP's 2021 LGBTQ+ Scientist of the Year, has been a recipient of the Presidential Young Investigator Award and many other grants from the National Science Foundation, and is a Fellow of the Institute of Mathematical Statistics and of the International Association of Applied Econometrics. His research has focused on such topics as: bootstrap and resampling methods, subsampling, randomization methods, inference, optimality, large-sample theory, nonparametrics, multiple hypothesis testing, and econometrics. He has invented or co-invented a variety of new statistical methods, including subsampling and the stationary bootstrap, as well as methods for multiple hypothesis testing. These methods have been applied to such diverse fields as clinical trials, climate change, finance, and economics.

Zusammenfassung

Testing Statistical Hypotheses, 4th Edition updates and expands upon the classic graduate text, now a two-volume work. The first volume covers finite sample theory, while the second volume discusses large sample theory. A definitive resource for graduate students and researchers alike, this work grows to include new topics of current relevance. New additions include and expanded treatment of multiple hypothesis testing, a new section on extensions of the Central Limit Theorem, coverage of high dimensional testing, expanded discussions of permutation and randomization tests, coverage of testing moment inequalities, and many new problems throughout the volume.

Inhaltsverzeichnis
1. The General Decision Problem.- 2. The Probability Background.- 3. Uniformly Most Powerful Tests.- 4. Unbiasedness: Theory and First Applications.- 5. Unbiasedness: Applications to Normal Distributions.- 6. Invariance.- 7. Linear Hypotheses.- 8. The Minimax Principle.- 9. Multiple Testing and Simultaneous Inference.- 10. Conditional Inference.- 11. Basic Large Sample Theory.- 12. Extensions of the CLT to Sums of Dependent Random Variables.- 13. Applications to Inference.- 14. Quadratic Mean Differentiable Families.- 15. Large Sample Optimality.- 16. Testing Goodness of Fit.- 17. Permutation and Randomization Tests.- 18. Bootstrap and Subsampling Methods.- A. Auxiliary Results.
Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Springer Texts in Statistics
Inhalt: 2 Bücher
ISBN-13: 9783030705770
ISBN-10: 3030705773
Sprache: Englisch
Herstellernummer: 978-3-030-70577-0
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Romano, Joseph P.
Lehmann, E. L.
Auflage: 4th ed. 2022
Hersteller: Springer International Publishing
Springer Texts in Statistics
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 68 mm
Von/Mit: Joseph P. Romano (u. a.)
Erscheinungsdatum: 24.06.2022
Gewicht: 1,891 kg
Artikel-ID: 119604904
Über den Autor

E.L. Lehmann (1917 - 2009) was an American statistician and professor of statistics at the University of California, Berkeley. He made significant contributions to nonparametric hypothesis testing, and he is one of the eponyms of the Lehmann-Scheffé theorem and of the Hodges-Lehmann estimator. Dr. Lehmann was a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands and the University of Chicago. He was the author of Elements of Large-Sample Theory (Springer 1999) and Theory of Point Estimation, Second Edition (Springer 1998, with George Casella).

Joseph P. Romano has been on faculty in the Statistics Department at Stanford since 1986. Since 2007, he has held a joint professorship appointment in both Statistics and Economics. He is a coauthor of three books, as well as over 100 journal articles. Dr. Romano was named NOGLSTP's 2021 LGBTQ+ Scientist of the Year, has been a recipient of the Presidential Young Investigator Award and many other grants from the National Science Foundation, and is a Fellow of the Institute of Mathematical Statistics and of the International Association of Applied Econometrics. His research has focused on such topics as: bootstrap and resampling methods, subsampling, randomization methods, inference, optimality, large-sample theory, nonparametrics, multiple hypothesis testing, and econometrics. He has invented or co-invented a variety of new statistical methods, including subsampling and the stationary bootstrap, as well as methods for multiple hypothesis testing. These methods have been applied to such diverse fields as clinical trials, climate change, finance, and economics.

Zusammenfassung

Testing Statistical Hypotheses, 4th Edition updates and expands upon the classic graduate text, now a two-volume work. The first volume covers finite sample theory, while the second volume discusses large sample theory. A definitive resource for graduate students and researchers alike, this work grows to include new topics of current relevance. New additions include and expanded treatment of multiple hypothesis testing, a new section on extensions of the Central Limit Theorem, coverage of high dimensional testing, expanded discussions of permutation and randomization tests, coverage of testing moment inequalities, and many new problems throughout the volume.

Inhaltsverzeichnis
1. The General Decision Problem.- 2. The Probability Background.- 3. Uniformly Most Powerful Tests.- 4. Unbiasedness: Theory and First Applications.- 5. Unbiasedness: Applications to Normal Distributions.- 6. Invariance.- 7. Linear Hypotheses.- 8. The Minimax Principle.- 9. Multiple Testing and Simultaneous Inference.- 10. Conditional Inference.- 11. Basic Large Sample Theory.- 12. Extensions of the CLT to Sums of Dependent Random Variables.- 13. Applications to Inference.- 14. Quadratic Mean Differentiable Families.- 15. Large Sample Optimality.- 16. Testing Goodness of Fit.- 17. Permutation and Randomization Tests.- 18. Bootstrap and Subsampling Methods.- A. Auxiliary Results.
Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Springer Texts in Statistics
Inhalt: 2 Bücher
ISBN-13: 9783030705770
ISBN-10: 3030705773
Sprache: Englisch
Herstellernummer: 978-3-030-70577-0
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Romano, Joseph P.
Lehmann, E. L.
Auflage: 4th ed. 2022
Hersteller: Springer International Publishing
Springer Texts in Statistics
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 68 mm
Von/Mit: Joseph P. Romano (u. a.)
Erscheinungsdatum: 24.06.2022
Gewicht: 1,891 kg
Artikel-ID: 119604904
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte