This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries.
The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications chapters on hardware and
measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.
This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries.
The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications chapters on hardware and
measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.
Über den Autor
Greg Swift received his PhD in physics at the University of California at Berkeley in 1980, and has worked in the Condensed Matter and Thermal Physics Group at Los Alamos National Laboratory (LANL) ever since. He is a Fellow of the Acoustical Society of America, of the American Physical Society, and of LANL. He received the Acoustical Society's Silver Medal in Physical Acoustics in 2000, an award that has been given, on average, only every three years. He received the US Department of Energy's E.O. Lawrence Award in 2004, in the category of Environmental Science and Technology. The main focus of Greg's research has been the invention and development of novel energy-conversion technologies. He enjoys the thermodynamics of heat engines and refrigerators, the thermodynamics of non-ideal-gas fluids, physical acoustics, hydrodynamics, and low-temperature physics. He hopes that thermoacoustic engines and refrigerators will play a meaningful role in the energy economy of the 21st century.
At Los Alamos, Greg has mentored two Master's students, three Ph.D. students, and 13 postdocs, and enjoyed significant partnerships with ten corporate collaborators. He is co-author (or, occasionally, sole author) of about 100 articles in refereed journals and conference proceedings. He is responsible for two dozen patents, and the thermoacoustics design and analysis software most commonly used worldwide-DeltaEC.
Zusammenfassung
Written by the undisputed leader in thermoacoustics
Represents a gateway into the field of thermoacoustics for engineers and acousticians alike
Bridges the fields of acoustics and thermodynamics, opening up new technological possibilities
Contains access to computer animations and DeltaEC examples
Inhaltsverzeichnis
Preface vList of symbols viii1 Introduction 11.1 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Length scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3 Overview and examples . . . . . . . . . . . . . . . . . . . . . 81.3.1 Standing-wave heat engine . . . . . . . . . . . . . . . 91.3.2 Standing-wave refrigerator . . . . . . . . . . . . . . . . 141.3.3 Orifice pulse-tube refrigerator . . . . . . . . . . . . . . 171.3.4 Thermoacoustic-Stirling heat engine . . . . . . . . . . 221.4 Thermoacoustics and conventional technology . . . . . . . . . 251.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Background 302.1 Laws of thermodynamics . . . . . . . . . . . . . . . . . . . . . 302.1.1 The first law . . . . . . . . . . . . . . . . . . . . . . . 302.1.2 The second law . . . . . . . . . . . . . . . . . . . . . . 342.2 Laws of fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.2.1 Continuity (mass) . . . . . . . . . . . . . . . . . . . . 392.2.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . . 402.2.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 412.2.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 432.3 Ideal gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442.3.1 Thermodynamic properties . . . . . . . . . . . . . . . 442.3.2 Transport properties . . . . . . . . . . . . . . . . . . . 472.3.3 Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . 472.3.4 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 482.4 Some consequences of the laws . . . . . . . . . . . . . . . . . 482.4.1 Carnot's eficiency . . . . . . . . . . . . . . . . . . . . 482.4.2 Maxwell relations . . . . . . . . . . . . . . . . . . . . . 492.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 Simple oscillations 553.1 The harmonic oscillator and complex notation . . . . . . . . . 553.2 Acoustic approximations to the laws of gases . . . . . . . . . 593.3 Some simple oscillations in gases . . . . . . . . . . . . . . . . 643.3.1 The gas spring . . . . . . . . . . . . . . . . . . . . . . 643.3.2 Simple sound waves . . . . . . . . . . . . . . . . . . . 663.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 Waves 724.1 Lossless acoustics and ideal resonators . . . . . . . . . . . . . 724.2 Viscous and thermal effects in large channels . . . . . . . . . 794.2.1 Viscous resistance . . . . . . . . . . . . . . . . . . . . 804.2.2 Thermal-relaxation conductance . . . . . . . . . . . . 854.3 Inviscid boundary-layer thermoacoustics . . . . . . . . . . . . 894.4 General thermoacoustics . . . . . . . . . . . . . . . . . . . . . 924.4.1 The math . . . . . . . . . . . . . . . . . . . . . . . . . 924.4.2 The ideas . . . . . . . . . . . . . . . . . . . . . . . . . 974.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 Power 1125.1 Acoustic power . . . . . . . . . . . . . . . . . . . . . . . . . . 1135.1.1 Acoustic power dissipation with dTm/dx = 0 . . . . . 1165.1.2 Acoustic power with zero viscosity . . . . . . . . . . . 1195.2 Total power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255.2.1 Traveling waves . . . . . . . . . . . . . . . . . . . . . . 1315.2.2 Standing waves . . . . . . . . . . . . . . . . . . . . . . 1325.3 Some calculation methods . . . . . . . . . . . . . . . . . . . . 1335.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406 Efficiency . . . 1446.1 Lost work and entropy generation . . . . . . . . . . . . . . . . 1456.2 Exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1566.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1607 Beyond Rott's thermoacoustics 1647.1 Tortuous porous media . . . . . . . . . . . . . . . . . . . . . . 1677.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1707.2.1 Minor losses . . . . . . . . . . . . . . . . . . . . . . . . 1777.3 Entrance effects and joining conditions . . . . . . . . . . . . . 1827.3.1 Entrance effects . . . . . . . . . . . . . . . . . . . . . . 1827.3.2 Joining conditions . . . . . . . . . . . . . . . . . . . . 1837.4 Mass streaming . . . . . . . . . . . . . . . . . . . . . . . . . . 1907.4.1 Gedeon streaming ("dc flow") . . . . . . . . . . . . . . 1937.4.2 Rayleigh streaming . . . . . . . . . . . . . . . . . . . . 1977.4.3 Jet-driven streaming . . . . . . . . . . . . . . . . . . . 2027.4.4 Streaming within a regenerator or stack . . . . . . . . 2047.4.5 Deliberate streaming . . . . . . . . . . . . . . . . . . . 2057.5 Harmonics and shocks . . . . . . . . . . . . . . . . . . . . . . 2127.6 Dimensionless groups . . . . . . . . . . . . . . . . . . . . . . . 2167.6.1 Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . 2177.6.2 Empirical correlation . . . . . . . . . . . . . . . . . . . 2187.6.3 Scale models . . . . . . . . . . . . . . . . . . . . . . . 2197.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2208 Hardware . . . . . 2238.1 Prelude: the gas itself . . . . . . . . . . . . . . . . . . . . . . 2238.2 Stacks and regenerators . . . . . . . . . . . . . . . . . . . . . 2248.2.1 Standing wave . . . . . . . . . . . . . . . . . . . . . . 2258.2.2 Traveling wave . . . . . . . . . . . . . . . . . . . . . . 2318.3 Heat exchangers . . . . . . . . . . . . . . . . . . . . . . . . . 2338.3.1 Common arrangements . . . . . . . . . . . . . . . . . 2338.3.2 Thermoacoustic choices . . . . . . . . . . . . . . . . . 2348.4 Thermal buffer tubes, pulse tubes, and flow straighteners . . 2388.5 Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2398.5.1 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . 2398.5.2 Size, weight, and pressure-vessel safety . . . . . . . . . 2418.5.3 Harmonic suppression . . . . . . . . . . . . . . . . . . 2428.6 Electroacoustic power transducers . . . . . . . . . . . . . . . 2438.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2489 Measurements . . . 2529.1 Easy measurements . . . . . . . . . . . . . . . . . . . . . . . . 2529.1.1 Pressures and frequency . . . . . . . . . . . . . . . . . 2539.1.2 Mean temperature . . . . . . . . . . . . . . . . . . . . 2559.2 Power measurements . . . . . . . . . . . . . . . . . . . . . . . 2569.2.1 Acoustic power . . . . . . . . . . . . . . . . . . . . . . 2569.2.2 Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2609.3 Difficult measurements . . . . . . . . . . . . . . . . . . . . . . 2629.4 Points of view . . . . . . . . . . . . . . . . . . . . . . . . . . . 2639.4.1 Natural dependence . . . . . . . . . . . . . . . . . . . 2649.4.2 Evidence . . . . . . . . . . . . . . . . . . . . . . . . . 2669.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . 2689.4.4 A thermoacoustic perspective . . . . . . . . . . . . . . 2719.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281A Common pitfalls 285B DeltaEC files . . . 287B.1 Standing-wave engine . . . . . . . . . . . . . . . . . . . . . . 287B.2 Standing-wave refrigerator . . . . . . . . . . . . . . . . . . . . 290B.3 Orifice pulse-tube refrigerator . . . . . . . . . . . . . . . . . . 292B.4 Thermoacoustic-Stirling heat engine . . . . . . . . . . . . . . 295Bibliography . . . 302Author index . . . 313Subject index . . . 316