Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Tree-Based Methods for Statistical Learning in R
Buch von Brandon M. Greenwell
Sprache: Englisch

109,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung

This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary.

This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary.

Über den Autor

Brandon M. Greenwell is a data scientist at 84.51° where he works on a diverse team to enable, empower, and enculturate statistical and machine learning best practices where it's applicable to help others solve real business problems. He received a B.S. in Statistics and an M.S. in Applied Statistics from Wright State University, and a Ph.D. in Applied Mathematics from the Air Force Institute of Technology. He's currently part of the Adjunct Graduate Faculty at Wright State University, an Adjunct Instructor at the University of Cincinnati, the lead developer and maintainer of several R packages available on CRAN (and off CRAN), and co-author of "Hands-On Machine Learning with R."

Inhaltsverzeichnis

1 Introduction 2 Binary recursive partitioning with CART 3 Conditional inference trees 4 "The hitchhiker's GUIDE to modern decision trees" 5 Ensemble algorithms 6 Peeking inside the "black box": post-hoc interpretability 7 Random forests 8 Gradient boosting machines

Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780367532468
ISBN-10: 0367532468
Sprache: Englisch
Einband: Gebunden
Autor: Greenwell, Brandon M.
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 238 x 158 x 31 mm
Von/Mit: Brandon M. Greenwell
Erscheinungsdatum: 23.06.2022
Gewicht: 0,754 kg
Artikel-ID: 120963746
Über den Autor

Brandon M. Greenwell is a data scientist at 84.51° where he works on a diverse team to enable, empower, and enculturate statistical and machine learning best practices where it's applicable to help others solve real business problems. He received a B.S. in Statistics and an M.S. in Applied Statistics from Wright State University, and a Ph.D. in Applied Mathematics from the Air Force Institute of Technology. He's currently part of the Adjunct Graduate Faculty at Wright State University, an Adjunct Instructor at the University of Cincinnati, the lead developer and maintainer of several R packages available on CRAN (and off CRAN), and co-author of "Hands-On Machine Learning with R."

Inhaltsverzeichnis

1 Introduction 2 Binary recursive partitioning with CART 3 Conditional inference trees 4 "The hitchhiker's GUIDE to modern decision trees" 5 Ensemble algorithms 6 Peeking inside the "black box": post-hoc interpretability 7 Random forests 8 Gradient boosting machines

Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780367532468
ISBN-10: 0367532468
Sprache: Englisch
Einband: Gebunden
Autor: Greenwell, Brandon M.
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 238 x 158 x 31 mm
Von/Mit: Brandon M. Greenwell
Erscheinungsdatum: 23.06.2022
Gewicht: 0,754 kg
Artikel-ID: 120963746
Sicherheitshinweis