Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Understanding Deep Learning
Buch von Simon J. D. Prince
Sprache: Englisch

103,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
"This book covers modern deep learning and tackles supervised learning, model architecture, unsupervised learning, and deep reinforcement learning"--
"This book covers modern deep learning and tackles supervised learning, model architecture, unsupervised learning, and deep reinforcement learning"--
Über den Autor
Simon J. D. Prince
Inhaltsverzeichnis
Contents
Preface xiii
Acknowledgements xv
1 Introduction 1
2 Supervised learning 17
3 Shallow neural networks 25
4 Deep neural networks 41
5 Loss functions 56
6 Fitting models 77
7 Gradients and initialization 96
8 Measuring performance 118
9 Regularization 138
10 Convolutional networks 161
11 Residual networks 186
12 Transformers 207
13 Graph neural networks 240
14 Unsupervised learning 268
15 Generative Adversarial Networks 275
16 Normalizing flows 303
17 Variational autoencoders 326
18 Diffusion models 348
19 Reinforcement learning 373
20 Why does deep learning work? 401
21 Deep learning and ethics 420
A Notation 436
B Mathematics 439
C Probability 448
Bibliography 462
Index 513
Details
Erscheinungsjahr: 2023
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780262048644
ISBN-10: 0262048647
Sprache: Englisch
Einband: Gebunden
Autor: Prince, Simon J. D.
Hersteller: The MIT Press
Abbildungen: 268 color illustrations, 15 b&w illustrations
Maße: 236 x 213 x 40 mm
Von/Mit: Simon J. D. Prince
Erscheinungsdatum: 05.12.2023
Gewicht: 1,34 kg
Artikel-ID: 127255623
Über den Autor
Simon J. D. Prince
Inhaltsverzeichnis
Contents
Preface xiii
Acknowledgements xv
1 Introduction 1
2 Supervised learning 17
3 Shallow neural networks 25
4 Deep neural networks 41
5 Loss functions 56
6 Fitting models 77
7 Gradients and initialization 96
8 Measuring performance 118
9 Regularization 138
10 Convolutional networks 161
11 Residual networks 186
12 Transformers 207
13 Graph neural networks 240
14 Unsupervised learning 268
15 Generative Adversarial Networks 275
16 Normalizing flows 303
17 Variational autoencoders 326
18 Diffusion models 348
19 Reinforcement learning 373
20 Why does deep learning work? 401
21 Deep learning and ethics 420
A Notation 436
B Mathematics 439
C Probability 448
Bibliography 462
Index 513
Details
Erscheinungsjahr: 2023
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780262048644
ISBN-10: 0262048647
Sprache: Englisch
Einband: Gebunden
Autor: Prince, Simon J. D.
Hersteller: The MIT Press
Abbildungen: 268 color illustrations, 15 b&w illustrations
Maße: 236 x 213 x 40 mm
Von/Mit: Simon J. D. Prince
Erscheinungsdatum: 05.12.2023
Gewicht: 1,34 kg
Artikel-ID: 127255623
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte