Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Analysis. Pt.1
Taschenbuch von V. A. Zorich
Sprache: Deutsch

24,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Dieses zweibändige Werk bietet einen ausführlichen und tiefgehenden Einblick in die Anfänge der Analysis, von der Einführung der reellen Zahlen, bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendretransformationen, elliptische Funktionen und Distributionen.

Besonders hervorzuheben ist dabei die deutliche Ausrichtung auf naturwissenschaftliche Fragestellungen und die detaillierte Herangehensweise an die wichtigen Begriffe, Inhalte und Sätze der Integral- und Differentialrechnung. Klarheit und Exaktheit in der Präsentation wird dabei durch eine Fülle von hilfreichen Beispielen, Aufgaben und Anwendungen, die selten in Analysisbüchern zu finden sind, ergänzt.

Der erste Band liefert eine vollständige übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variabler in modernen, präzisen und gleichzeitig anschaulichen und verständlichen Formulierungen.

Dieses zweibändige Werk bietet einen ausführlichen und tiefgehenden Einblick in die Anfänge der Analysis, von der Einführung der reellen Zahlen, bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendretransformationen, elliptische Funktionen und Distributionen.

Besonders hervorzuheben ist dabei die deutliche Ausrichtung auf naturwissenschaftliche Fragestellungen und die detaillierte Herangehensweise an die wichtigen Begriffe, Inhalte und Sätze der Integral- und Differentialrechnung. Klarheit und Exaktheit in der Präsentation wird dabei durch eine Fülle von hilfreichen Beispielen, Aufgaben und Anwendungen, die selten in Analysisbüchern zu finden sind, ergänzt.

Der erste Band liefert eine vollständige übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variabler in modernen, präzisen und gleichzeitig anschaulichen und verständlichen Formulierungen.

Inhaltsverzeichnis
1 Allgemeine mathematische Begriffe und Schreibweisen.- Logische Symbole - Mengen und elementare Mengenoperationen - Funktionen - Ergänzungen.- 2 Die reellen Zahlen.-Axiome und Eigenschaften der reellen Zahlen - Klassen reeller Zahlen und Wichtige Sätze zur Vollständigkeit - Abzählbare und überabzählbare Mengen.- 3 Grenzwerte.- Der Grenzwert einer Folge - Der Grenzwert einer Funktion.- 4 Stetige Funktionen.- Wichtige Definitionen und Beispiele - Eigenschaften stetiger Funktionen.- 5 Differentialrechnung.- Differenzierbare Funktionen - Die zentralen Sätze der Differentialrechnung - Differentialrechnung zur Untersuchung von Funktionen - Komplexe Zahlen und Elementarfunktionen - Beispiele zur Differentialrechnung in den Naturwissenschaften - Stammfunktionen.- 6 Integralrechnung.- Definition des Integrals - Linearität, Additivität und Monotonie des Integrals - Das Integral und die Ableitung - Einige Anwendungen der Integralrechnung - Uneigentliche Integrale.- 7 Funktionen mehrerer Variabler.- Der Raum Rm und seine Unterräume - Grenzwerte und Stetigkeit von Funktionen mehrerer Variabler.- 8 Differentialrechnung mit Funktionen mehrerer Variabler.- Die lineare Struktur auf Rm - Das Differential einer Funktion mehrerer Variabler - Die wichtigsten Gesetze der Differentiation - Reelle Funktionen mehrerer Variabler - Der Satz zur impliziten Funktion - Einige Korollare zum Satz zur impliziten Funktion - Flächen in Rn und bedingte.- Einige Aufgaben aus den Halbjahresprüfungen.-1. Einführung der Analysis (Zahlen, Funktionen, Grenzwerte).- 2. Differentialrechnung in einer Variablen.- 3. Integration und Einführung mehrerer Variabler.- 4. Differentialrechnung mehrerer Variabler.- Prüfungsgebiete.- 1. Erstes Semester - Einleitung und Differentialrechnung in einer Variablen.-
2. Zweites Semester - Integration. Differentialrechnung mit mehreren Variablen.- Literaturverzeichnis.- Klassische Werke - Orginalquellen - Wichtige umfassende grundlegende Werke -Klassische Vorlesungen in Analysis aus der ersten Hälfte des 20. Jahrhunderts -Lehrbücher -Studienunterlagen - Weiterführende Literatur.- Namensverzeichnis.- Sachverzeichnis.
Details
Erscheinungsjahr: 2006
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xviii
598 S.
65 Fotos
ISBN-13: 9783540332770
ISBN-10: 3540332774
Sprache: Deutsch
Herstellernummer: 978-3-540-33277-0
Autor: Zorich, V. A.
Übersetzung: Schüle, J.
Hersteller: Springer
Springer, Berlin
Springer Berlin Heidelberg
Abbildungen: XVIII, 598 S.
Maße: 234 x 158 x 42 mm
Von/Mit: V. A. Zorich
Erscheinungsdatum: 22.09.2006
Gewicht: 0,918 kg
Artikel-ID: 102196935
Inhaltsverzeichnis
1 Allgemeine mathematische Begriffe und Schreibweisen.- Logische Symbole - Mengen und elementare Mengenoperationen - Funktionen - Ergänzungen.- 2 Die reellen Zahlen.-Axiome und Eigenschaften der reellen Zahlen - Klassen reeller Zahlen und Wichtige Sätze zur Vollständigkeit - Abzählbare und überabzählbare Mengen.- 3 Grenzwerte.- Der Grenzwert einer Folge - Der Grenzwert einer Funktion.- 4 Stetige Funktionen.- Wichtige Definitionen und Beispiele - Eigenschaften stetiger Funktionen.- 5 Differentialrechnung.- Differenzierbare Funktionen - Die zentralen Sätze der Differentialrechnung - Differentialrechnung zur Untersuchung von Funktionen - Komplexe Zahlen und Elementarfunktionen - Beispiele zur Differentialrechnung in den Naturwissenschaften - Stammfunktionen.- 6 Integralrechnung.- Definition des Integrals - Linearität, Additivität und Monotonie des Integrals - Das Integral und die Ableitung - Einige Anwendungen der Integralrechnung - Uneigentliche Integrale.- 7 Funktionen mehrerer Variabler.- Der Raum Rm und seine Unterräume - Grenzwerte und Stetigkeit von Funktionen mehrerer Variabler.- 8 Differentialrechnung mit Funktionen mehrerer Variabler.- Die lineare Struktur auf Rm - Das Differential einer Funktion mehrerer Variabler - Die wichtigsten Gesetze der Differentiation - Reelle Funktionen mehrerer Variabler - Der Satz zur impliziten Funktion - Einige Korollare zum Satz zur impliziten Funktion - Flächen in Rn und bedingte.- Einige Aufgaben aus den Halbjahresprüfungen.-1. Einführung der Analysis (Zahlen, Funktionen, Grenzwerte).- 2. Differentialrechnung in einer Variablen.- 3. Integration und Einführung mehrerer Variabler.- 4. Differentialrechnung mehrerer Variabler.- Prüfungsgebiete.- 1. Erstes Semester - Einleitung und Differentialrechnung in einer Variablen.-
2. Zweites Semester - Integration. Differentialrechnung mit mehreren Variablen.- Literaturverzeichnis.- Klassische Werke - Orginalquellen - Wichtige umfassende grundlegende Werke -Klassische Vorlesungen in Analysis aus der ersten Hälfte des 20. Jahrhunderts -Lehrbücher -Studienunterlagen - Weiterführende Literatur.- Namensverzeichnis.- Sachverzeichnis.
Details
Erscheinungsjahr: 2006
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xviii
598 S.
65 Fotos
ISBN-13: 9783540332770
ISBN-10: 3540332774
Sprache: Deutsch
Herstellernummer: 978-3-540-33277-0
Autor: Zorich, V. A.
Übersetzung: Schüle, J.
Hersteller: Springer
Springer, Berlin
Springer Berlin Heidelberg
Abbildungen: XVIII, 598 S.
Maße: 234 x 158 x 42 mm
Von/Mit: V. A. Zorich
Erscheinungsdatum: 22.09.2006
Gewicht: 0,918 kg
Artikel-ID: 102196935
Warnhinweis