Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Bayesian Reasoning and Machine Learning
Buch von David Barber
Sprache: Englisch

143,60 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.
Über den Autor
David Barber is Reader in Information Processing in the Department of Computer Science, University College London.
Inhaltsverzeichnis
Preface; Part I. Inference in Probabilistic Models: 1. Probabilistic reasoning; 2. Basic graph concepts; 3. Belief networks; 4. Graphical models; 5. Efficient inference in trees; 6. The junction tree algorithm; 7. Making decisions; Part II. Learning in Probabilistic Models: 8. Statistics for machine learning; 9. Learning as inference; 10. Naive Bayes; 11. Learning with hidden variables; 12. Bayesian model selection; Part III. Machine Learning: 13. Machine learning concepts; 14. Nearest neighbour classification; 15. Unsupervised linear dimension reduction; 16. Supervised linear dimension reduction; 17. Linear models; 18. Bayesian linear models; 19. Gaussian processes; 20. Mixture models; 21. Latent linear models; 22. Latent ability models; Part IV. Dynamical Models: 23. Discrete-state Markov models; 24. Continuous-state Markov models; 25. Switching linear dynamical systems; 26. Distributed computation; Part V. Approximate Inference: 27. Sampling; 28. Deterministic approximate inference; Appendix. Background mathematics; Bibliography; Index.
Details
Erscheinungsjahr: 2019
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9780521518147
ISBN-10: 0521518148
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Barber, David
Hersteller: Cambridge University Press
Maße: 250 x 175 x 44 mm
Von/Mit: David Barber
Erscheinungsdatum: 15.02.2019
Gewicht: 1,432 kg
Artikel-ID: 107164752
Über den Autor
David Barber is Reader in Information Processing in the Department of Computer Science, University College London.
Inhaltsverzeichnis
Preface; Part I. Inference in Probabilistic Models: 1. Probabilistic reasoning; 2. Basic graph concepts; 3. Belief networks; 4. Graphical models; 5. Efficient inference in trees; 6. The junction tree algorithm; 7. Making decisions; Part II. Learning in Probabilistic Models: 8. Statistics for machine learning; 9. Learning as inference; 10. Naive Bayes; 11. Learning with hidden variables; 12. Bayesian model selection; Part III. Machine Learning: 13. Machine learning concepts; 14. Nearest neighbour classification; 15. Unsupervised linear dimension reduction; 16. Supervised linear dimension reduction; 17. Linear models; 18. Bayesian linear models; 19. Gaussian processes; 20. Mixture models; 21. Latent linear models; 22. Latent ability models; Part IV. Dynamical Models: 23. Discrete-state Markov models; 24. Continuous-state Markov models; 25. Switching linear dynamical systems; 26. Distributed computation; Part V. Approximate Inference: 27. Sampling; 28. Deterministic approximate inference; Appendix. Background mathematics; Bibliography; Index.
Details
Erscheinungsjahr: 2019
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9780521518147
ISBN-10: 0521518148
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Barber, David
Hersteller: Cambridge University Press
Maße: 250 x 175 x 44 mm
Von/Mit: David Barber
Erscheinungsdatum: 15.02.2019
Gewicht: 1,432 kg
Artikel-ID: 107164752
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte