Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Data-Science-Crashkurs
Eine interaktive und praktische Einführung
Taschenbuch von Steffen Herbold
Sprache: Deutsch

34,90 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Data Science praxisnah erklärt
  • Praxisnaher Einstieg mit anschaulichen Erklärungen und zahlreichen Anwendungsbeispielen, unterstützt durch interaktive Elemente
  • Für alle, die mehr über die Möglichkeiten der Datenanalyse lernen wollen, ohne gleich tief in die Theorie oder bestimmte Methoden einzusteigen

»Data-Science-Crashkurs« bietet einen praxisnahen Einstieg in Data Science, angereichert mit interaktiven Elementen, der die Breite der Möglichkeiten der Datenanalyse aufzeigt. Dieses Buch geht tief genug, um Vorteile, Nachteile und Risiken zu verstehen, aber steigt dennoch nicht zu tief in die zugrunde liegende Mathematik ein. Es wird nicht nur erklärt, wofür wichtige Begriffe wie Big Data, machinelles Lernen oder Klassifikation stehen, sondern auch anschaulich mit zahlreichen Beispielen aufgezeigt, wie Daten analysiert werden. Ein breiter Überblick über Analysemethoden vermittelt das nötige Wissen, um in eigenen Projekten geeignete Methoden auszuwählen und anzuwenden, um das gewünschte Ergebnis zu erreichen.

Der benötigte Python-Quelltext, der z.B. zur Durchführung von Analysen oder zur Erstellung von Visualisierungen verwendet wird, ist in Form von Jupyter-Notebooks frei verfügbar.

Data Science praxisnah erklärt
  • Praxisnaher Einstieg mit anschaulichen Erklärungen und zahlreichen Anwendungsbeispielen, unterstützt durch interaktive Elemente
  • Für alle, die mehr über die Möglichkeiten der Datenanalyse lernen wollen, ohne gleich tief in die Theorie oder bestimmte Methoden einzusteigen

»Data-Science-Crashkurs« bietet einen praxisnahen Einstieg in Data Science, angereichert mit interaktiven Elementen, der die Breite der Möglichkeiten der Datenanalyse aufzeigt. Dieses Buch geht tief genug, um Vorteile, Nachteile und Risiken zu verstehen, aber steigt dennoch nicht zu tief in die zugrunde liegende Mathematik ein. Es wird nicht nur erklärt, wofür wichtige Begriffe wie Big Data, machinelles Lernen oder Klassifikation stehen, sondern auch anschaulich mit zahlreichen Beispielen aufgezeigt, wie Daten analysiert werden. Ein breiter Überblick über Analysemethoden vermittelt das nötige Wissen, um in eigenen Projekten geeignete Methoden auszuwählen und anzuwenden, um das gewünschte Ergebnis zu erreichen.

Der benötigte Python-Quelltext, der z.B. zur Durchführung von Analysen oder zur Erstellung von Visualisierungen verwendet wird, ist in Form von Jupyter-Notebooks frei verfügbar.

Über den Autor
Dr. Steffen Herbold ist Professor für Methoden und Anwendungen maschinellen Lernens am Institut für Software und Systems Engineering der Technischen Universität Clausthal, wo er die Forschungsgruppe AI Engineering leitet. Zuvor hat er an der Universität Göttingen promoviert und habilitiert und am Karlsruher Institut für Technologie einen Lehrstuhl vertreten. In der Forschung beschäftigt er sich mit der Entwicklung und Qualitätssicherung der Lösung von Problemen durch maschinelles Lernen, z.B. zur effizienteren Softwareentwicklung, der Prognose von Ernteerträgen oder auch der Erkennung von aeroakustischen Geräuschquellen.
Details
Erscheinungsjahr: 2022
Fachbereich: Programmiersprachen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: XVI
330 S.
komplett in Farbe
ISBN-13: 9783864908620
ISBN-10: 3864908620
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Herbold, Steffen
Hersteller: Dpunkt.Verlag GmbH
"dpunkt.verlag GmbH"
Abbildungen: komplett in Farbe
Maße: 235 x 162 x 21 mm
Von/Mit: Steffen Herbold
Erscheinungsdatum: 06.01.2022
Gewicht: 0,662 kg
Artikel-ID: 120148881
Über den Autor
Dr. Steffen Herbold ist Professor für Methoden und Anwendungen maschinellen Lernens am Institut für Software und Systems Engineering der Technischen Universität Clausthal, wo er die Forschungsgruppe AI Engineering leitet. Zuvor hat er an der Universität Göttingen promoviert und habilitiert und am Karlsruher Institut für Technologie einen Lehrstuhl vertreten. In der Forschung beschäftigt er sich mit der Entwicklung und Qualitätssicherung der Lösung von Problemen durch maschinelles Lernen, z.B. zur effizienteren Softwareentwicklung, der Prognose von Ernteerträgen oder auch der Erkennung von aeroakustischen Geräuschquellen.
Details
Erscheinungsjahr: 2022
Fachbereich: Programmiersprachen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: XVI
330 S.
komplett in Farbe
ISBN-13: 9783864908620
ISBN-10: 3864908620
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Herbold, Steffen
Hersteller: Dpunkt.Verlag GmbH
"dpunkt.verlag GmbH"
Abbildungen: komplett in Farbe
Maße: 235 x 162 x 21 mm
Von/Mit: Steffen Herbold
Erscheinungsdatum: 06.01.2022
Gewicht: 0,662 kg
Artikel-ID: 120148881
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte