Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
143,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.
The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.
The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.
Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.
The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.
The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.
Über den Autor
Michael Th. Rassias is a Postdoctoral researcher at the Institute of Mathematics of the University of Zürich and a visiting researcher at the Program in Interdisciplinary Studies of the Institute for Advanced Study, Princeton.
Zusammenfassung
Illustrates mathematical results and solves open problems in a simple manner
Features contributions by experts in analysis, number theory, and related fields
Contains new results in rapidly progressing areas of research
Inhaltsverzeichnis
Preface (Dyson).- 1. An introduction to Riemann's life, his mathematics, and his work on the zeta function (R. Baker).- 2. Ramanujan's formula for zeta (2n+1) (B.C. Berndt, A. Straub).- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus).- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 5. Arthur's truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield).- 6. On a Cubic moment of Hardy's function with a shift (A. Ivic).- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Y¿ld¿r¿m).- 8. Bagchi's Theorem for families of automorphic forms (E. Kowalski).- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian).- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider).- 11. Reading Riemann (S.J. Patterson).- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlich¿¿).
Details
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
x
298 S. 2 s/w Illustr. 5 farbige Illustr. 298 p. 7 illus. 5 illus. in color. |
ISBN-13: | 9783319599687 |
ISBN-10: | 3319599682 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-59968-7 |
Einband: | Gebunden |
Autor: |
Montgomery, Hugh
Nikeghbali, Ashkan Rassias, Michael Th. |
Redaktion: |
Montgomery, Hugh
Rassias, Michael Th. Nikeghbali, Ashkan |
Herausgeber: | Hugh Montgomery/Ashkan Nikeghbali/Michael Th Rassias |
Auflage: | 1st edition 2017 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 23 mm |
Von/Mit: | Hugh Montgomery (u. a.) |
Erscheinungsdatum: | 18.09.2017 |
Gewicht: | 0,629 kg |
Über den Autor
Michael Th. Rassias is a Postdoctoral researcher at the Institute of Mathematics of the University of Zürich and a visiting researcher at the Program in Interdisciplinary Studies of the Institute for Advanced Study, Princeton.
Zusammenfassung
Illustrates mathematical results and solves open problems in a simple manner
Features contributions by experts in analysis, number theory, and related fields
Contains new results in rapidly progressing areas of research
Inhaltsverzeichnis
Preface (Dyson).- 1. An introduction to Riemann's life, his mathematics, and his work on the zeta function (R. Baker).- 2. Ramanujan's formula for zeta (2n+1) (B.C. Berndt, A. Straub).- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus).- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 5. Arthur's truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield).- 6. On a Cubic moment of Hardy's function with a shift (A. Ivic).- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Y¿ld¿r¿m).- 8. Bagchi's Theorem for families of automorphic forms (E. Kowalski).- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian).- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider).- 11. Reading Riemann (S.J. Patterson).- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlich¿¿).
Details
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
x
298 S. 2 s/w Illustr. 5 farbige Illustr. 298 p. 7 illus. 5 illus. in color. |
ISBN-13: | 9783319599687 |
ISBN-10: | 3319599682 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-59968-7 |
Einband: | Gebunden |
Autor: |
Montgomery, Hugh
Nikeghbali, Ashkan Rassias, Michael Th. |
Redaktion: |
Montgomery, Hugh
Rassias, Michael Th. Nikeghbali, Ashkan |
Herausgeber: | Hugh Montgomery/Ashkan Nikeghbali/Michael Th Rassias |
Auflage: | 1st edition 2017 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 241 x 160 x 23 mm |
Von/Mit: | Hugh Montgomery (u. a.) |
Erscheinungsdatum: | 18.09.2017 |
Gewicht: | 0,629 kg |
Sicherheitshinweis