Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Fundamentals of Music Processing
Using Python and Jupyter Notebooks
Buch von Meinard Müller
Sprache: Englisch

85,60 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval (MIR). Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, signal processing, computer science, digital humanities, and musicology.

The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform¿concepts used throughout the book. Each of the subsequent chapters starts with a general description of a concrete music processing task and then discusses¿in a mathematically rigorous way¿essential techniques and algorithms applicable to a wide range of analysis, classification, and retrieval problems. By mixing theory and practice, the book¿s goal is to offer detailed technological insights and a deep understanding of music processing applications.

Asa substantial extension, the textbook¿s second edition introduces the FMP (fundamentals of music processing) notebooks, which provide additional audio-visual material and Python code examples that implement all computational approaches step by step. Using Jupyter notebooks and open-source web applications, the FMP notebooks yield an interactive framework that allows students to experiment with their music examples, explore the effect of parameter settings, and understand the computed results by suitable visualizations and sonifications. The FMP notebooks are available from the author¿s institutional web page at the International Audio Laboratories Erlangen.
The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval (MIR). Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, signal processing, computer science, digital humanities, and musicology.

The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform¿concepts used throughout the book. Each of the subsequent chapters starts with a general description of a concrete music processing task and then discusses¿in a mathematically rigorous way¿essential techniques and algorithms applicable to a wide range of analysis, classification, and retrieval problems. By mixing theory and practice, the book¿s goal is to offer detailed technological insights and a deep understanding of music processing applications.

Asa substantial extension, the textbook¿s second edition introduces the FMP (fundamentals of music processing) notebooks, which provide additional audio-visual material and Python code examples that implement all computational approaches step by step. Using Jupyter notebooks and open-source web applications, the FMP notebooks yield an interactive framework that allows students to experiment with their music examples, explore the effect of parameter settings, and understand the computed results by suitable visualizations and sonifications. The FMP notebooks are available from the author¿s institutional web page at the International Audio Laboratories Erlangen.
Über den Autor
Meinard Müller is professor for Semantic Audio Processing at the International Audio Laboratories Erlangen, Germany, a joint institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Fraunhofer Institute for Integrated Circuits IIS. His research interests include music processing, music information retrieval, audio signal processing, content-based multimedia, and motion retrieval.
Zusammenfassung

Combines foundational technologies and essential applications in music processing and music information retrieval

Chapters can be read independently and thus serve as building blocks for individually structured courses

Each chapter is complemented with many examples, figures, exercises, and references for further reading

Related Web page includes additional audio-visual material and Python code examples

Inhaltsverzeichnis
1. Music Representations.- 2. Fourier Analysis of Signals.- 3. Music Synchronization.- 4. Music Structure Analysis.- 5. Chord Recognition.- 6. Tempo and Beat Tracking.- 7. Content-Based Audio Retrieval.- 8. Musically Informed Audio Decomposition.
Details
Erscheinungsjahr: 2021
Fachbereich: Anwendungs-Software
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xxxi
495 S.
ISBN-13: 9783030698072
ISBN-10: 3030698076
Sprache: Englisch
Herstellernummer: 978-3-030-69807-2
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Müller, Meinard
Auflage: 2nd ed. 2021
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 32 mm
Von/Mit: Meinard Müller
Erscheinungsdatum: 10.04.2021
Gewicht: 1,047 kg
Artikel-ID: 119581061
Über den Autor
Meinard Müller is professor for Semantic Audio Processing at the International Audio Laboratories Erlangen, Germany, a joint institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Fraunhofer Institute for Integrated Circuits IIS. His research interests include music processing, music information retrieval, audio signal processing, content-based multimedia, and motion retrieval.
Zusammenfassung

Combines foundational technologies and essential applications in music processing and music information retrieval

Chapters can be read independently and thus serve as building blocks for individually structured courses

Each chapter is complemented with many examples, figures, exercises, and references for further reading

Related Web page includes additional audio-visual material and Python code examples

Inhaltsverzeichnis
1. Music Representations.- 2. Fourier Analysis of Signals.- 3. Music Synchronization.- 4. Music Structure Analysis.- 5. Chord Recognition.- 6. Tempo and Beat Tracking.- 7. Content-Based Audio Retrieval.- 8. Musically Informed Audio Decomposition.
Details
Erscheinungsjahr: 2021
Fachbereich: Anwendungs-Software
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xxxi
495 S.
ISBN-13: 9783030698072
ISBN-10: 3030698076
Sprache: Englisch
Herstellernummer: 978-3-030-69807-2
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Müller, Meinard
Auflage: 2nd ed. 2021
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 32 mm
Von/Mit: Meinard Müller
Erscheinungsdatum: 10.04.2021
Gewicht: 1,047 kg
Artikel-ID: 119581061
Sicherheitshinweis