Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
59,60 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
The first edition of this book presented simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut), using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive softcover. The first four chapters could be used as the text for a graduate course on the applications of linear elliptic operators in differential geometry and the only prerequisites are a familiarity with basic differential geometry. The next four chapters discuss the equivariant index theorem, and include a useful introduction to equivariant differential forms. The last two chapters give a proof, in the spirit of the book, of Bismut's Local Family Index Theorem for Dirac operators.
The first edition of this book presented simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut), using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive softcover. The first four chapters could be used as the text for a graduate course on the applications of linear elliptic operators in differential geometry and the only prerequisites are a familiarity with basic differential geometry. The next four chapters discuss the equivariant index theorem, and include a useful introduction to equivariant differential forms. The last two chapters give a proof, in the spirit of the book, of Bismut's Local Family Index Theorem for Dirac operators.
Zusammenfassung
Includes supplementary material: [...]
Inhaltsverzeichnis
1 Background on Differential Geometry.- 1.1 Fibre Bundles and Connections.- 1.2 Riemannian Manifolds.- 1.3 Superspaces.- 1.4 Superconnections.- 1.5 Characteristic Classes.- 1.6 The Euler and Thorn Classes.- 2 Asymptotic Expansion of the Heat Kernel.- 2.1 Differential Operators.- 2.2 The Heat Kernel on Euclidean Space.- 2.3 Heat Kernels.- 2.4 Construction of the Heat Kernel.- 2.5 The Formal Solution.- 2.6 The Trace of the Heat Kernel.- 2.7 Heat Kernels Depending on a Parameter.- 3 Clifford Modules and Dirac Operators.- 3.1 The Clifford Algebra.- 3.2 Spinors.- 3.3 Dirac Operators.- 3.4 Index of Dirac Operators.- 3.5 The Lichnerowicz Formula.- 3.6 Some Examples of Clifford Modules.- 4 Index Density of Dirac Operators.- 4.1 The Local Index Theorem.- 4.2 Mehler's Formula.- 4.3 Calculation of the Index Density.- 5 The Exponential Map and the Index Density.- 5.1 Jacobian of the Exponential Map on Principal Bundles.- 5.2 The Heat Kernel of a Principal Bundle.- 5.3 Calculus with Grassmann and Clifford Variables.- 5.4 The Index of Dirac Operators.- 6 The Equivariant Index Theorem.- 6.1 The Equivariant Index of Dirac Operators.- 6.2 The Atiyah-Bott Fixed Point Formula.- 6.3 Asymptotic Expansion of the Equivariant Heat Kernel.- 6.4 The Local Equivariant Index Theorem.- 6.5 Geodesic Distance on a Principal Bundle.- 6.6 The heat kernel of an equivariant vector bundle.- 6.7 Proof of Proposition 6.13.- 7 Equivariant Differential Forms.- 7.1 Equivariant Characteristic Classes.- 7.2 The Localization Formula.- 7.3 Bott's Formulas for Characteristic Numbers.- 7.4 Exact Stationary Phase Approximation.- 7.5 The Fourier Transform of Coadjoint Orbits.- 7.6 Equivariant Cohomology and Families.- 7.7 The Bott Class.- 8 The Kirillov Formula for the Equivariant Index.- 8.1 The Kirillov Formula.- 8.2 The Weyl and Kirillov Character Formulas.- 8.3 The Heat Kernel Proof of the Kirillov Formula.- 9 The Index Bundle.- 9.1 The Index Bundle in Finite Dimensions.- 9.2 The Index Bundle of a Family of Dirac Operators.- 9.3 The Chern Character of the Index Bundle.- 9.4 The Equivariant Index and the Index Bundle.- 9.5 The Case of Varying Dimension.- 9.6 The Zeta-Function of a Laplacian.- 9.7 The Determinant Line Bundle.- 10 The Family Index Theorem.- 10.1 Riemannian Fibre Bundles.- 10.2 Clifford Modules on Fibre Bundles.- 10.3 The Bismut Superconnection.- 10.4 The Family Index Density.- 10.5 The Transgression Formula.- 10.6 The Curvature of the Determinant Line Bundle.- 10.7 The Kirillov Formula and Bismut's Index Theorem.- References.- List of Notation.
Details
Erscheinungsjahr: | 2003 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
ix
363 S. |
ISBN-13: | 9783540200628 |
ISBN-10: | 3540200622 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Berline, Nicole
Vergne, Michèle Getzler, Ezra |
Hersteller: |
Springer Berlin
Springer Berlin Heidelberg |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 21 mm |
Von/Mit: | Nicole Berline (u. a.) |
Erscheinungsdatum: | 08.12.2003 |
Gewicht: | 0,569 kg |
Zusammenfassung
Includes supplementary material: [...]
Inhaltsverzeichnis
1 Background on Differential Geometry.- 1.1 Fibre Bundles and Connections.- 1.2 Riemannian Manifolds.- 1.3 Superspaces.- 1.4 Superconnections.- 1.5 Characteristic Classes.- 1.6 The Euler and Thorn Classes.- 2 Asymptotic Expansion of the Heat Kernel.- 2.1 Differential Operators.- 2.2 The Heat Kernel on Euclidean Space.- 2.3 Heat Kernels.- 2.4 Construction of the Heat Kernel.- 2.5 The Formal Solution.- 2.6 The Trace of the Heat Kernel.- 2.7 Heat Kernels Depending on a Parameter.- 3 Clifford Modules and Dirac Operators.- 3.1 The Clifford Algebra.- 3.2 Spinors.- 3.3 Dirac Operators.- 3.4 Index of Dirac Operators.- 3.5 The Lichnerowicz Formula.- 3.6 Some Examples of Clifford Modules.- 4 Index Density of Dirac Operators.- 4.1 The Local Index Theorem.- 4.2 Mehler's Formula.- 4.3 Calculation of the Index Density.- 5 The Exponential Map and the Index Density.- 5.1 Jacobian of the Exponential Map on Principal Bundles.- 5.2 The Heat Kernel of a Principal Bundle.- 5.3 Calculus with Grassmann and Clifford Variables.- 5.4 The Index of Dirac Operators.- 6 The Equivariant Index Theorem.- 6.1 The Equivariant Index of Dirac Operators.- 6.2 The Atiyah-Bott Fixed Point Formula.- 6.3 Asymptotic Expansion of the Equivariant Heat Kernel.- 6.4 The Local Equivariant Index Theorem.- 6.5 Geodesic Distance on a Principal Bundle.- 6.6 The heat kernel of an equivariant vector bundle.- 6.7 Proof of Proposition 6.13.- 7 Equivariant Differential Forms.- 7.1 Equivariant Characteristic Classes.- 7.2 The Localization Formula.- 7.3 Bott's Formulas for Characteristic Numbers.- 7.4 Exact Stationary Phase Approximation.- 7.5 The Fourier Transform of Coadjoint Orbits.- 7.6 Equivariant Cohomology and Families.- 7.7 The Bott Class.- 8 The Kirillov Formula for the Equivariant Index.- 8.1 The Kirillov Formula.- 8.2 The Weyl and Kirillov Character Formulas.- 8.3 The Heat Kernel Proof of the Kirillov Formula.- 9 The Index Bundle.- 9.1 The Index Bundle in Finite Dimensions.- 9.2 The Index Bundle of a Family of Dirac Operators.- 9.3 The Chern Character of the Index Bundle.- 9.4 The Equivariant Index and the Index Bundle.- 9.5 The Case of Varying Dimension.- 9.6 The Zeta-Function of a Laplacian.- 9.7 The Determinant Line Bundle.- 10 The Family Index Theorem.- 10.1 Riemannian Fibre Bundles.- 10.2 Clifford Modules on Fibre Bundles.- 10.3 The Bismut Superconnection.- 10.4 The Family Index Density.- 10.5 The Transgression Formula.- 10.6 The Curvature of the Determinant Line Bundle.- 10.7 The Kirillov Formula and Bismut's Index Theorem.- References.- List of Notation.
Details
Erscheinungsjahr: | 2003 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
ix
363 S. |
ISBN-13: | 9783540200628 |
ISBN-10: | 3540200622 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Berline, Nicole
Vergne, Michèle Getzler, Ezra |
Hersteller: |
Springer Berlin
Springer Berlin Heidelberg |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 21 mm |
Von/Mit: | Nicole Berline (u. a.) |
Erscheinungsdatum: | 08.12.2003 |
Gewicht: | 0,569 kg |
Sicherheitshinweis