Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
71,00 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
"A rigorous, yet accessible, textbook for computer science students learning probability. It covers topics of interest to computer scientists, including randomized algorithms, simulation, statistical inference, and stochastic systems modeling. Replete with engaging real-world examples, exercises, and full-color illustrations"--
"A rigorous, yet accessible, textbook for computer science students learning probability. It covers topics of interest to computer scientists, including randomized algorithms, simulation, statistical inference, and stochastic systems modeling. Replete with engaging real-world examples, exercises, and full-color illustrations"--
Über den Autor
Mor Harchol-Balter is the Bruce J. Nelson Professor of Computer Science at Carnegie Mellon University. She is a Fellow of both ACM and IEEE. She has received numerous teaching awards, including the Herbert A. Simon Award for teaching excellence at CMU. She is also the author of the popular textbook Performance Analysis and Design of Computer Systems (Cambridge, 2013).
Inhaltsverzeichnis
Preface; Part I. Fundamentals and Probability on Events: 1. Before we start ... some mathematical basics; 2. Probability on events; Part II. Discrete Random Variables: 3. Probability and discrete random variables; 4. Expectations; 5. Variance, higher moments, and random sums; 6. z-Transforms; Part III. Continuous Random Variables: 7. Continuous random variables: single distribution; 8. Continuous random variables: joint distributions; 9. Normal distribution; 10. Heavy tails: the distributions of computing; 11. Laplace transforms; Part IV. Computer Systems Modeling and Simulation: 12. The Poisson process; 13. Generating random variables for simulation; 14. Event-driven simulation; Part V. Statistical Inference; 15. Estimators for mean and variance; 16. Classical statistical inference; 17. Bayesian statistical inference; Part VI. Tail Bounds and Applications: 18. Tail bounds; 19. Applications of tail bounds: confidence intervals and balls-and-bins; 20. Hashing algorithms; Part VII. Randomized Algorithms: 21. Las Vegas randomized algorithms; 22. Monte Carlo randomized algorithms; 23. Primality testing; Part VIII. Discrete-time Markov Chains; 24. Discrete-time Markov chains: finite-state; 25. Ergodicity for finite-state discrete-time Markov chains; 26. Discrete-time Markov chains: infinite-state; 27. A little bit of queueing theory; References; Index.
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
ISBN-13: | 9781009309073 |
ISBN-10: | 1009309072 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Harchol-Balter, Mor |
Hersteller: | Cambridge University Pr. |
Maße: | 251 x 172 x 30 mm |
Von/Mit: | Mor Harchol-Balter |
Erscheinungsdatum: | 28.09.2023 |
Gewicht: | 1,222 kg |
Über den Autor
Mor Harchol-Balter is the Bruce J. Nelson Professor of Computer Science at Carnegie Mellon University. She is a Fellow of both ACM and IEEE. She has received numerous teaching awards, including the Herbert A. Simon Award for teaching excellence at CMU. She is also the author of the popular textbook Performance Analysis and Design of Computer Systems (Cambridge, 2013).
Inhaltsverzeichnis
Preface; Part I. Fundamentals and Probability on Events: 1. Before we start ... some mathematical basics; 2. Probability on events; Part II. Discrete Random Variables: 3. Probability and discrete random variables; 4. Expectations; 5. Variance, higher moments, and random sums; 6. z-Transforms; Part III. Continuous Random Variables: 7. Continuous random variables: single distribution; 8. Continuous random variables: joint distributions; 9. Normal distribution; 10. Heavy tails: the distributions of computing; 11. Laplace transforms; Part IV. Computer Systems Modeling and Simulation: 12. The Poisson process; 13. Generating random variables for simulation; 14. Event-driven simulation; Part V. Statistical Inference; 15. Estimators for mean and variance; 16. Classical statistical inference; 17. Bayesian statistical inference; Part VI. Tail Bounds and Applications: 18. Tail bounds; 19. Applications of tail bounds: confidence intervals and balls-and-bins; 20. Hashing algorithms; Part VII. Randomized Algorithms: 21. Las Vegas randomized algorithms; 22. Monte Carlo randomized algorithms; 23. Primality testing; Part VIII. Discrete-time Markov Chains; 24. Discrete-time Markov chains: finite-state; 25. Ergodicity for finite-state discrete-time Markov chains; 26. Discrete-time Markov chains: infinite-state; 27. A little bit of queueing theory; References; Index.
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
ISBN-13: | 9781009309073 |
ISBN-10: | 1009309072 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Harchol-Balter, Mor |
Hersteller: | Cambridge University Pr. |
Maße: | 251 x 172 x 30 mm |
Von/Mit: | Mor Harchol-Balter |
Erscheinungsdatum: | 28.09.2023 |
Gewicht: | 1,222 kg |
Warnhinweis