Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Lineare Algebra und Analytische Geometrie II
Noten zu einer Vorlesung mit historischen Anmerkungen von Erhard Scholz
Buch von Egbert Brieskorn
Sprache: Deutsch

59,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Die Jordanzerlegung in halbeinfachen und nilpotenten Anteil lieferte uns die charakteristische Abbildung n M{n x n,K) ~ K , x die jeder Matrix A die Koeffizienten (a , ¿¿¿ ,a ) des charakteristischen 1 n Polynoms von A zuordnet. Mit Hilfe dieser Abbildung hatten wir das Klassi­ fikationsproblem in zwei Teilprobleme A und B aufgespalten. Problem A Hier bestand das Problem in der Klassifikation der halbeinfachen Matrizen bis auf Konjugation. Das Hauptresultat war der Satz 11.45*. Die Konjugations­ klassen halbeinfacher Matrizen entsprechen bijektiv den Punkten des affinen Raumes ~. Eine Einteilung der halbeinfachen Konjugationsklassen in Typen ergibt sich in naturlicher Weise durch die algebraischen Multiplizitaten der Eigenwerte Ai ¿ Dabei entsprechen die regularen Elemente, d.h. die­ n jenigen mit m = 1 , gerade den Punkten von K 1m Komplement der Disk- i n minantenmenge D cK , und den verschiedenen Typen von singul4ren Elementen entsprechen, wie wir an Beispielen gesehen haben, verschiedene Strata (d.h. Schichten) von D, welche man analytisch-geometrisch charakterisieren kann. 1m Fall K = Roder K = ~ sehen wir also, daB die Konjugationsklassen der halbeinfachen Anteile eine kontinuierliche Mannigfaltigkeit bilden, namlich einen affinen Raum Kn, und daB die weitere Typeneinteilung dieser Konju­ gationsklassen mit der analytischen Geometrie der Diskriminantenmengen n D c. K zusammenhangt.
Die Jordanzerlegung in halbeinfachen und nilpotenten Anteil lieferte uns die charakteristische Abbildung n M{n x n,K) ~ K , x die jeder Matrix A die Koeffizienten (a , ¿¿¿ ,a ) des charakteristischen 1 n Polynoms von A zuordnet. Mit Hilfe dieser Abbildung hatten wir das Klassi­ fikationsproblem in zwei Teilprobleme A und B aufgespalten. Problem A Hier bestand das Problem in der Klassifikation der halbeinfachen Matrizen bis auf Konjugation. Das Hauptresultat war der Satz 11.45*. Die Konjugations­ klassen halbeinfacher Matrizen entsprechen bijektiv den Punkten des affinen Raumes ~. Eine Einteilung der halbeinfachen Konjugationsklassen in Typen ergibt sich in naturlicher Weise durch die algebraischen Multiplizitaten der Eigenwerte Ai ¿ Dabei entsprechen die regularen Elemente, d.h. die­ n jenigen mit m = 1 , gerade den Punkten von K 1m Komplement der Disk- i n minantenmenge D cK , und den verschiedenen Typen von singul4ren Elementen entsprechen, wie wir an Beispielen gesehen haben, verschiedene Strata (d.h. Schichten) von D, welche man analytisch-geometrisch charakterisieren kann. 1m Fall K = Roder K = ~ sehen wir also, daB die Konjugationsklassen der halbeinfachen Anteile eine kontinuierliche Mannigfaltigkeit bilden, namlich einen affinen Raum Kn, und daB die weitere Typeneinteilung dieser Konju­ gationsklassen mit der analytischen Geometrie der Diskriminantenmengen n D c. K zusammenhangt.
Inhaltsverzeichnis
V. Die Klassifikation der Endomorphismen endlichdimensionaler Vektorräume.- Einleitende Bemerkungen zum Klassifikationsproblem.- § 11 Normalformen.- Literatur zu § 11.- VI. Vektorräume mit einer Sesquilinearform.- Einleitende Bemerkungen.- § 12 Vektorräume mit Hermiteschen Formen und ihre Endanorphismen.- Bemerkungen zur Geschichte der Geometrie der klassischen Gruppen Euklidische Geometrie und orthogonale Gruppe · symmetrische Bilinearformen, verallgemeinerte orthogonale Gruppen · Hermitesche Formen, unitäre Geometrie · schiefsymmetrische Formen, symplektische Geometrie · die klassischen Gruppen als Liegruppen.- Literatur zu § 12.- Quellenverzeichnis der Abbildungen.- Stichwortverzeichnis.
Details
Erscheinungsjahr: 1985
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xiv
534 S.
ISBN-13: 9783528085629
ISBN-10: 3528085622
Sprache: Deutsch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Brieskorn, Egbert
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 245 x 171 x 39 mm
Von/Mit: Egbert Brieskorn
Erscheinungsdatum: 01.01.1985
Gewicht: 1,177 kg
Artikel-ID: 106526778
Inhaltsverzeichnis
V. Die Klassifikation der Endomorphismen endlichdimensionaler Vektorräume.- Einleitende Bemerkungen zum Klassifikationsproblem.- § 11 Normalformen.- Literatur zu § 11.- VI. Vektorräume mit einer Sesquilinearform.- Einleitende Bemerkungen.- § 12 Vektorräume mit Hermiteschen Formen und ihre Endanorphismen.- Bemerkungen zur Geschichte der Geometrie der klassischen Gruppen Euklidische Geometrie und orthogonale Gruppe · symmetrische Bilinearformen, verallgemeinerte orthogonale Gruppen · Hermitesche Formen, unitäre Geometrie · schiefsymmetrische Formen, symplektische Geometrie · die klassischen Gruppen als Liegruppen.- Literatur zu § 12.- Quellenverzeichnis der Abbildungen.- Stichwortverzeichnis.
Details
Erscheinungsjahr: 1985
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xiv
534 S.
ISBN-13: 9783528085629
ISBN-10: 3528085622
Sprache: Deutsch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Brieskorn, Egbert
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 245 x 171 x 39 mm
Von/Mit: Egbert Brieskorn
Erscheinungsdatum: 01.01.1985
Gewicht: 1,177 kg
Artikel-ID: 106526778
Sicherheitshinweis