Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Maschinelles Lernen mit Python und R für Dummies
Taschenbuch von John Paul Mueller (u. a.)
Sprache: Deutsch

29,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Maschinelles Lernen ist aufregend: Mit schnellen Prozessoren und großen Speichern können Computer aus Erfahrungen lernen, künstliche Intelligenz kommt wieder in Reichweite. Mit diesem Buch verstehen Sie, was maschinelles Lernen bedeutet, für welche Probleme es sich eignet, welche neuen Herangehensweisen damit möglich sind und wie Sie mit Python, R und speziellen Werkzeugen maschinelles Lernen implementieren. Sie brauchen dafür keine jahrelange Erfahrung als Programmierer und kein Mathematikstudium. Die praktische Anwendung maschinellen Lernens steht in diesem Buch im Vordergrund. Spielen Sie mit den Tools und haben Sie Spaß dabei! Lernen Sie Fakten und Mythen zum maschinellen Lernen zu unterscheiden.
Maschinelles Lernen ist aufregend: Mit schnellen Prozessoren und großen Speichern können Computer aus Erfahrungen lernen, künstliche Intelligenz kommt wieder in Reichweite. Mit diesem Buch verstehen Sie, was maschinelles Lernen bedeutet, für welche Probleme es sich eignet, welche neuen Herangehensweisen damit möglich sind und wie Sie mit Python, R und speziellen Werkzeugen maschinelles Lernen implementieren. Sie brauchen dafür keine jahrelange Erfahrung als Programmierer und kein Mathematikstudium. Die praktische Anwendung maschinellen Lernens steht in diesem Buch im Vordergrund. Spielen Sie mit den Tools und haben Sie Spaß dabei! Lernen Sie Fakten und Mythen zum maschinellen Lernen zu unterscheiden.
Über den Autor
John Mueller ist freier Autor und technischer Redakteur. Er hat das Bücherschreiben im Blut. Bis heute hat er 99 Bücher und mehr als 600 Artikel geschrieben. Sein Themenspektrum reicht von Netzwerken zu Datensicherheit und von Datenbankmanagement zu Programmierung.
Luca Massaron ist Data Scientist und geübt darin, Big Data in Smart Data zu überführen. Er nutzt am liebsten die ganz einfachen, aber dennoch effektiven Techniken des Data Mining und des maschinellen Lernens.
Inhaltsverzeichnis

Über die Autoren 13

Einführung 25

Teil I: Einführung in das maschinelle Lernen 29

Kapitel 1: Künstliche Intelligenz in Fiktion und Realität 31

Kapitel 2: Lernen im Zeitalter von Big Data 43

Kapitel 3: Ein Ausblick auf die Zukunft 53

Teil II: Einrichtung Ihrer Programmierumgebung 63

Kapitel 4: Installation einer R-Distribution 65

Kapitel 5: Programmierung mit R und RStudio 83

Kapitel 6: Installation einer Python-Distribution 107

Kapitel 7: Programmierung mit Python und Anaconda 127

Kapitel 8: Weitere Softwareprogramme für maschinelles Lernen 151

Teil III: Mathematische Grundlagen 159

Kapitel 9: Mathematische Grundlagen des maschinellen Lernens 161

Kapitel 10: Fehlerfunktionen und ihre Minimierung 179

Kapitel 11: Validierung von maschinellem Lernen 191

Kapitel 12: Einfache Lerner 209

Teil IV: Aufbereitung und Verwendung von Daten

zum Lernen 225

Kapitel 13: Vorverarbeitung von Daten 227

Kapitel 14: Ausnutzung von Ähnlichkeiten in Daten 245

Kapitel 15: Einfache Anwendung von linearen Modellen 265

Kapitel 16: Komplexere Lernverfahren und neuronale Netze 287

Kapitel 17: Support Vector Machines und Kernel-Funktionen 303

Kapitel 18: Kombination von Lernalgorithmen in Ensembles 321

Teil V: Praktische Anwendung von maschinellem Lernen 337

Kapitel 19: Klassifikation von Bildern 339

Kapitel 20: Bewertung von Meinungen und Stimmungslagen 353

Kapitel 21: Produkt- und Filmempfehlungen 373

Teil VI: Der Top-Ten-Teil 387

Kapitel 22: Zehn wichtige Pakete für maschinelles Lernen 389

Kapitel 23: Zehn Methoden zur Verbesserung Ihrer maschinellen Lernmodelle 395

Stichwortverzeichnis 403

Details
Erscheinungsjahr: 2017
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: für Dummies
Inhalt: 405 S.
ISBN-13: 9783527713639
ISBN-10: 3527713638
Sprache: Deutsch
Herstellernummer: 1171363 000
Einband: Kartoniert / Broschiert
Autor: Mueller, John Paul
Massaron, Luca
Übersetzung: Linke, Simone
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 241 x 179 x 25 mm
Von/Mit: John Paul Mueller (u. a.)
Erscheinungsdatum: 13.09.2017
Gewicht: 0,718 kg
Artikel-ID: 109765000
Über den Autor
John Mueller ist freier Autor und technischer Redakteur. Er hat das Bücherschreiben im Blut. Bis heute hat er 99 Bücher und mehr als 600 Artikel geschrieben. Sein Themenspektrum reicht von Netzwerken zu Datensicherheit und von Datenbankmanagement zu Programmierung.
Luca Massaron ist Data Scientist und geübt darin, Big Data in Smart Data zu überführen. Er nutzt am liebsten die ganz einfachen, aber dennoch effektiven Techniken des Data Mining und des maschinellen Lernens.
Inhaltsverzeichnis

Über die Autoren 13

Einführung 25

Teil I: Einführung in das maschinelle Lernen 29

Kapitel 1: Künstliche Intelligenz in Fiktion und Realität 31

Kapitel 2: Lernen im Zeitalter von Big Data 43

Kapitel 3: Ein Ausblick auf die Zukunft 53

Teil II: Einrichtung Ihrer Programmierumgebung 63

Kapitel 4: Installation einer R-Distribution 65

Kapitel 5: Programmierung mit R und RStudio 83

Kapitel 6: Installation einer Python-Distribution 107

Kapitel 7: Programmierung mit Python und Anaconda 127

Kapitel 8: Weitere Softwareprogramme für maschinelles Lernen 151

Teil III: Mathematische Grundlagen 159

Kapitel 9: Mathematische Grundlagen des maschinellen Lernens 161

Kapitel 10: Fehlerfunktionen und ihre Minimierung 179

Kapitel 11: Validierung von maschinellem Lernen 191

Kapitel 12: Einfache Lerner 209

Teil IV: Aufbereitung und Verwendung von Daten

zum Lernen 225

Kapitel 13: Vorverarbeitung von Daten 227

Kapitel 14: Ausnutzung von Ähnlichkeiten in Daten 245

Kapitel 15: Einfache Anwendung von linearen Modellen 265

Kapitel 16: Komplexere Lernverfahren und neuronale Netze 287

Kapitel 17: Support Vector Machines und Kernel-Funktionen 303

Kapitel 18: Kombination von Lernalgorithmen in Ensembles 321

Teil V: Praktische Anwendung von maschinellem Lernen 337

Kapitel 19: Klassifikation von Bildern 339

Kapitel 20: Bewertung von Meinungen und Stimmungslagen 353

Kapitel 21: Produkt- und Filmempfehlungen 373

Teil VI: Der Top-Ten-Teil 387

Kapitel 22: Zehn wichtige Pakete für maschinelles Lernen 389

Kapitel 23: Zehn Methoden zur Verbesserung Ihrer maschinellen Lernmodelle 395

Stichwortverzeichnis 403

Details
Erscheinungsjahr: 2017
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: für Dummies
Inhalt: 405 S.
ISBN-13: 9783527713639
ISBN-10: 3527713638
Sprache: Deutsch
Herstellernummer: 1171363 000
Einband: Kartoniert / Broschiert
Autor: Mueller, John Paul
Massaron, Luca
Übersetzung: Linke, Simone
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 241 x 179 x 25 mm
Von/Mit: John Paul Mueller (u. a.)
Erscheinungsdatum: 13.09.2017
Gewicht: 0,718 kg
Artikel-ID: 109765000
Sicherheitshinweis