Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
134,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Neurophysiological Basis of Motor Control, Third Edition, emphasizes the neurophysiological mechanisms relevant to the processes of generating voluntary movements, helping students better understand how the brain generates control signals and how the body executes them.
Neurophysiological Basis of Motor Control, Third Edition, emphasizes the neurophysiological mechanisms relevant to the processes of generating voluntary movements, helping students better understand how the brain generates control signals and how the body executes them.
Über den Autor
Mark L. Latash, PhD, is a distinguished professor of kinesiology and the director of the Motor Control Laboratory at Penn State University. His research interests are the control and coordination of human voluntary movements, movement disorders in neurological patients, and effects of rehabilitation.
Latash has authored five books, edited 10 books, and had more than 400 peer-reviewed articles published. He was the founding editor of the journal Motor Control and is a former president of the International Society of Motor Control (ISMC). He is a fellow of the National Academy of Kinesiology (NAK) and member of the Society for Neuroscience (SfN). He has served as director of the annual Motor Control Summer School series and is a recipient of the ISMC’s Bernstein Prize in motor control and Penn State’s Pauline Schmitt Russell Distinguished Research Career Award.
Tarkeshwar Singh, PhD, is an assistant professor of kinesiology at Penn State University, where he serves as the director of the Sensorimotor Neuroscience and Learning Laboratory. Singh’s research interests are in the areas of multisensory integration, motor control, eye movements, and movement disorders. He has published over 30 peer-reviewed papers and three book chapters. He is a member of the Society for Neuroscience (SfN), the International Society of Motor Control (ISMC), the Society for the Neural Control of Movement (NCM), and the American Physiological Society (APS).
Latash has authored five books, edited 10 books, and had more than 400 peer-reviewed articles published. He was the founding editor of the journal Motor Control and is a former president of the International Society of Motor Control (ISMC). He is a fellow of the National Academy of Kinesiology (NAK) and member of the Society for Neuroscience (SfN). He has served as director of the annual Motor Control Summer School series and is a recipient of the ISMC’s Bernstein Prize in motor control and Penn State’s Pauline Schmitt Russell Distinguished Research Career Award.
Tarkeshwar Singh, PhD, is an assistant professor of kinesiology at Penn State University, where he serves as the director of the Sensorimotor Neuroscience and Learning Laboratory. Singh’s research interests are in the areas of multisensory integration, motor control, eye movements, and movement disorders. He has published over 30 peer-reviewed papers and three book chapters. He is a member of the Society for Neuroscience (SfN), the International Society of Motor Control (ISMC), the Society for the Neural Control of Movement (NCM), and the American Physiological Society (APS).
Inhaltsverzeichnis
Chapter 1. History, Evolution, and Motor Control
1.1 Brief History of Movement Studies
1.2 Evolution of Movements and Nikolai Bernstein’s Theory
1.3 Motor Control and Laws of Nature
Part I. Excitable Cells and Their Communication
Chapter 2. Membranes, Particles, and Equilibrium Potentials
2.1 The Biological Membrane
2.2 Movement in a Solution
2.3 Concentration of Water: Osmosis
2.4 Movement of Ions: The Nernst Equation
Chapter 3. Action Potential
3.1 Creation of a Membrane Potential
3.2 Basic Features of the Action Potential
3.3 Mechanisms of Generating an Action Potential
Chapter 4. Information Conduction and Transmission
4.1 Conduction of an Action Potential
4.2 Myelinated Fibers
4.3 The Structure of a Neuron
4.4 Information Coding in the Nervous System
4.5 Synaptic Transmission
4.6 Neurotransmitters
4.7 Temporal and Spatial Summation
Chapter 5. Skeletal Muscle
5.1 Skeletal Muscle Structure
5.2 Myofilaments
5.3 Neuromuscular Synapse
5.4 Mechanisms of Contraction
5.5 Types of Muscle Contractions
5.6 Elements of Mechanics
5.7 Force–Length and Force–Velocity Relations
5.8 External Regimes of Muscle Contraction
Chapter 6. Peripheral Receptors
6.1 General Classification and Properties of Receptors
6.2 Muscle Spindles
6.3 The Gamma-System
6.4 Golgi Tendon Organs
6.5 Other Muscle Receptors
6.6 Articular Receptors
6.7 Cutaneous Receptors
6.8 Signals From Peripheral Receptors
Chapter 7. Motor Units and Electromyography
7.1 The Motor Unit
7.2 Fast and Slow Motor Units
7.3 The Henneman Principle
7.4 Functional Roles of Different Motor Units
7.5 Electromyography
7.6 Processing Electromyographic Signals
Problems for Part I
Part II. Neuroanatomical Foundations of Motor Control
Chapter 8. Cerebral Cortex
8.1 Structure of the Cerebral Cortex
8.2 Cells in the Cerebral Cortex
8.3 Premotor Cortex and Supplementary Motor Area
8.4 Primary Motor Cortex
8.5 Efferent Output From the Cortical Motor Areas
8.6 Afferent Input Into the Cortical Motor Areas
8.7 Hemispheric Lateralization in the Cortical Motor Areas
8.8 Preparation for a Voluntary Movement
8.9 Neuronal Population Vectors
8.10 Encoding Movement Parameters in the M1
8.11 Brain–Machine Interfaces
Chapter 9. Basal Ganglia
9.1 Anatomy of the Basal Ganglia
9.2 Inputs and Outputs of the Basal Ganglia
9.3 Direct and Indirect Pathways Within the Basal Ganglia
9.4 Dopamine Modulation of Basal Ganglia Circuits
9.5 Motor Circuits Involving the Basal Ganglia
9.6 Activity of the Basal Ganglia During Movements
9.7 Movement Disorders Associated With the Basal Ganglia
9.8 Other Functions of the Basal Ganglia
Chapter 10. Cerebellum
10.1 Overall Structure of the Cerebellum
10.2 Inputs and Outputs of the Cerebellum
10.3 Pathways Within the Cerebellum
10.4 Distinct Cerebellar Regions Control Discrete Motor Functions
10.5 Cerebellar Control of Movement
10.6 Consequences of Cerebellar Lesions on Movements
10.7 Cerebellar Contribution to Motor Learning
10.8 Cerebellar Interactions With the Basal Ganglia and Cortex
Chapter 11. Brainstem and Extrapyramidal Tracts
11.1 Brainstem Anatomy
11.2 Reticular Formation
11.3 Superior Colliculus
11.4 Red Nucleus
11.5 Vestibular Nuclei
11.6 Cranial Nerves
11.7 Descending Tracts
Problems for Part II
Part III. Sensory Basis of Motor Control
Chapter 12. Central Processing of Somatosensory Information
12.1 First-Order Neurons
12.2 Second-Order Neurons
12.3 Third-Order Neurons
12.4 Proprioceptive System
12.5 Primary and Secondary Somatosensory Cortex
12.6 Integration of Somatosensory Input With Other Sensory Modalities
12.7 Injuries to Somatosensory Pathways
Chapter 13. Vestibular and Auditory System
13.1 Transduction in the Vestibular System
13.2 Vestibular Afferents Respond to Head Motion
13.3 Central Projections From the Otolith Organs and Semicircular Canals
13.4 Central Pathways That Stabilize Gaze, Posture, and Head Movements
13.5 Peripheral Auditory System
13.6 Central Auditory Projections From the Cochlea
13.7 Auditory Integration
13.8 Auditory Thalamus and Cortex
13.9 Auditory Cortex and Limb Motor Control
Chapter 14. Visual System
14.1 Structure of the Eye
14.2 Structure of the Retina
14.3 Rods and Cones
14.4 Optic Nerve, Tracts, and Radiations
14.5 Striate Cortex
14.6 Retinotopic Organization of V1
14.7 Extrastriate Cortex
14.8 Neurons of the Two Visual Streams
14.9 Visual Deficits Due to Area-Specific Visual System Damage
14.10 Ocular Movements
Problems for Part III
Part IV. Reflexes and Reflex-Like Movements
Chapter 15. Reflexes
15.1 Definition of a Reflex
15.2 Reflex Arc, Gain, and Latency
15.3 Reflex Classifications
15.4 Conditioned Reflexes
Chapter 16. Excitation and Inhibition Within the Spinal Cord
16.1 The Spinal Cord
16.2 Excitation Within the Central Nervous System
16.3 Postsynaptic Inhibition
16.4 Recurrent Inhibition and Renshaw Cells
16.5 Reciprocal Inhibition
16.6 Presynaptic Inhibition
16.7 Persistent Inward Currents
Chapter 17. Monosynaptic Reflexes
17.1 H-Reflex and M-Response
17.2 Tendon Tap Reflex (T-Reflex)
17.3 Effects of Voluntary Muscle Activation on Monosynaptic Reflexes
17.4 F-Wave
Chapter 18. Oligosynaptic and Polysynaptic Reflexes
18.1 Oligosynaptic Reflexes
18.2 Polysynaptic Reflexes
18.3 Flexor Reflex
18.4 Tonic Stretch Reflex
18.5 Tonic Vibration Reflex
18.6 Interaction Among Reflex Pathways
18.7 Inter-Joint and Inter-Limb Reflexes
Chapter 19. Long-Loop Reflexes and Reflex-Like Reactions
19.1 Preprogrammed Reactions
19.2 Preprogrammed Reactions Versus Stretch Reflexes
19.3 Afferent Sources of Preprogrammed Reactions
19.4 Preprogrammed Reactions During Movement Perturbations
19.5 Basic Features of Preprogrammed Reactions
19.6 Preprogrammed Corrections of Vertical Posture
19.7 Corrective Stumbling Reactions
Problems for Part IV
Part V. Control and Coordination of Goal-Oriented Movements
Chapter 20. Voluntary Control of a Single Muscle
20.1 What Is Voluntary Movement?
20.2 Feedforward and Feedback Control
20.3 Servo Control
20.4 Servo Hypothesis
20.5 α-γ Coactivation
20.6 Voluntary Activation of Muscles
20.7 Equilibrium-Point Hypothesis
Chapter 21. General Issues of Motor Control
21.1 Force Control
21.2 Engrams and the Generalized Motor Program
21.3 Internal Models
21.4 Equilibrium-Point Hypothesis: Main Ideas
21.5 Equilibrium-Point Hypothesis: Subtle Details
21.6 Dynamic Systems Approach
Chapter 22. Motor Synergies
22.1 The Problem of Motor Redundancy
22.2 Optimization Approaches
22.3 Bernstein’s Level of Synergies
22.4 Uniting Muscles Into Groups
22.5 Principle of Abundance
22.6 Ensuring Stability of Movements
22.7 Uncontrolled Manifold Hypothesis
Chapter 23. Patterns of Single-Joint Movements
23.1 Isotonic Movements and Isometric Contractions
23.2 Task Parameters and Performance Variables
23.3 Kinematic Patterns During Single-Joint Isotonic Movements
23.4 EMG Patterns During Single-Joint Isotonic Movements
23.5 EMG Patterns During Single-Joint Isometric Contractions
23.6 Dual-Strategy Hypothesis
23.7 Single-Joint Movements Within the Equilibrium-Point Hypothesis
Chapter 24. Multijoint Movement
24.1 Two Issues With Controlling Natural Reaching Movements
24.2 Interjoint Reflexes
24.3 Multijoint Coordination by the Spinal Cord
24.4 Supraspinal Mechanisms
24.5 Neural Control Variables for Multijoint Movements
24.6 Equilibrium-Trajectory Hypothesis
24.7 Hierarchical Control With Spatial Referent Coordinates
24.8 Multijoint Synergies
Chapter 25. Postural Control
25.1 Vertical Posture
25.2 Postural Sway
25.3 Role of the Vestibular System
25.4 Role of Vision
25.5 Role of Proprioception
25.6 Anticipatory Postural Adjustments
25.7 Corrective Postural Reactions
25.8 Postural Synergies
Chapter 26. Locomotion
26.1 Two Approaches to Locomotion
26.2 Central Pattern Generator
26.3 Locomotor Centers
26.4 Spinal Locomotion
26.5 Spinal Control of Locomotion in Humans
26.6 Gait Patterns
26.7 Dynamic Pattern Generation
26.8 Step Initiation
26.9 Corrective Stumbling Reaction
Chapter 27. Prehension
27.1 Hand Joints and Muscles
27.2 Cortical Representations of the Hand
27.3 Indices of Finger Interaction
27.4 Multifinger Synergies in Pressing Tasks
27.5 Grasping
27.6 Prehension Synergies and Principle of Superposition
Problems for Part V
Part VI. Sensorimotor Integration for Perception and Action
Chapter 28. Kinesthetic Perception
28.1 Sensation and Perception
28.2 Weber-Fechner Law
28.3 Ambiguity of Sensory Information
28.4 Afferent and Efferent Components of Perception
28.5 Vibration-Induced Kinesthetic Illusions
28.6 Distorted Efferent Copy and Preconceptions
28.7 Sense of Effort
28.8 Stability of Percepts
28.9 Perception–Action Coupling
Chapter 29. Multisensory Integration
29.1 Spatial Multisensory Integration for Limb Motor Control
29.2 Temporal Multisensory Integration for Limb Motor Control
29.3 Coordinate Frames for Limb Motor Control
29.4 Postural Balance and Motion Perception
29.5 Neural...
1.1 Brief History of Movement Studies
1.2 Evolution of Movements and Nikolai Bernstein’s Theory
1.3 Motor Control and Laws of Nature
Part I. Excitable Cells and Their Communication
Chapter 2. Membranes, Particles, and Equilibrium Potentials
2.1 The Biological Membrane
2.2 Movement in a Solution
2.3 Concentration of Water: Osmosis
2.4 Movement of Ions: The Nernst Equation
Chapter 3. Action Potential
3.1 Creation of a Membrane Potential
3.2 Basic Features of the Action Potential
3.3 Mechanisms of Generating an Action Potential
Chapter 4. Information Conduction and Transmission
4.1 Conduction of an Action Potential
4.2 Myelinated Fibers
4.3 The Structure of a Neuron
4.4 Information Coding in the Nervous System
4.5 Synaptic Transmission
4.6 Neurotransmitters
4.7 Temporal and Spatial Summation
Chapter 5. Skeletal Muscle
5.1 Skeletal Muscle Structure
5.2 Myofilaments
5.3 Neuromuscular Synapse
5.4 Mechanisms of Contraction
5.5 Types of Muscle Contractions
5.6 Elements of Mechanics
5.7 Force–Length and Force–Velocity Relations
5.8 External Regimes of Muscle Contraction
Chapter 6. Peripheral Receptors
6.1 General Classification and Properties of Receptors
6.2 Muscle Spindles
6.3 The Gamma-System
6.4 Golgi Tendon Organs
6.5 Other Muscle Receptors
6.6 Articular Receptors
6.7 Cutaneous Receptors
6.8 Signals From Peripheral Receptors
Chapter 7. Motor Units and Electromyography
7.1 The Motor Unit
7.2 Fast and Slow Motor Units
7.3 The Henneman Principle
7.4 Functional Roles of Different Motor Units
7.5 Electromyography
7.6 Processing Electromyographic Signals
Problems for Part I
Part II. Neuroanatomical Foundations of Motor Control
Chapter 8. Cerebral Cortex
8.1 Structure of the Cerebral Cortex
8.2 Cells in the Cerebral Cortex
8.3 Premotor Cortex and Supplementary Motor Area
8.4 Primary Motor Cortex
8.5 Efferent Output From the Cortical Motor Areas
8.6 Afferent Input Into the Cortical Motor Areas
8.7 Hemispheric Lateralization in the Cortical Motor Areas
8.8 Preparation for a Voluntary Movement
8.9 Neuronal Population Vectors
8.10 Encoding Movement Parameters in the M1
8.11 Brain–Machine Interfaces
Chapter 9. Basal Ganglia
9.1 Anatomy of the Basal Ganglia
9.2 Inputs and Outputs of the Basal Ganglia
9.3 Direct and Indirect Pathways Within the Basal Ganglia
9.4 Dopamine Modulation of Basal Ganglia Circuits
9.5 Motor Circuits Involving the Basal Ganglia
9.6 Activity of the Basal Ganglia During Movements
9.7 Movement Disorders Associated With the Basal Ganglia
9.8 Other Functions of the Basal Ganglia
Chapter 10. Cerebellum
10.1 Overall Structure of the Cerebellum
10.2 Inputs and Outputs of the Cerebellum
10.3 Pathways Within the Cerebellum
10.4 Distinct Cerebellar Regions Control Discrete Motor Functions
10.5 Cerebellar Control of Movement
10.6 Consequences of Cerebellar Lesions on Movements
10.7 Cerebellar Contribution to Motor Learning
10.8 Cerebellar Interactions With the Basal Ganglia and Cortex
Chapter 11. Brainstem and Extrapyramidal Tracts
11.1 Brainstem Anatomy
11.2 Reticular Formation
11.3 Superior Colliculus
11.4 Red Nucleus
11.5 Vestibular Nuclei
11.6 Cranial Nerves
11.7 Descending Tracts
Problems for Part II
Part III. Sensory Basis of Motor Control
Chapter 12. Central Processing of Somatosensory Information
12.1 First-Order Neurons
12.2 Second-Order Neurons
12.3 Third-Order Neurons
12.4 Proprioceptive System
12.5 Primary and Secondary Somatosensory Cortex
12.6 Integration of Somatosensory Input With Other Sensory Modalities
12.7 Injuries to Somatosensory Pathways
Chapter 13. Vestibular and Auditory System
13.1 Transduction in the Vestibular System
13.2 Vestibular Afferents Respond to Head Motion
13.3 Central Projections From the Otolith Organs and Semicircular Canals
13.4 Central Pathways That Stabilize Gaze, Posture, and Head Movements
13.5 Peripheral Auditory System
13.6 Central Auditory Projections From the Cochlea
13.7 Auditory Integration
13.8 Auditory Thalamus and Cortex
13.9 Auditory Cortex and Limb Motor Control
Chapter 14. Visual System
14.1 Structure of the Eye
14.2 Structure of the Retina
14.3 Rods and Cones
14.4 Optic Nerve, Tracts, and Radiations
14.5 Striate Cortex
14.6 Retinotopic Organization of V1
14.7 Extrastriate Cortex
14.8 Neurons of the Two Visual Streams
14.9 Visual Deficits Due to Area-Specific Visual System Damage
14.10 Ocular Movements
Problems for Part III
Part IV. Reflexes and Reflex-Like Movements
Chapter 15. Reflexes
15.1 Definition of a Reflex
15.2 Reflex Arc, Gain, and Latency
15.3 Reflex Classifications
15.4 Conditioned Reflexes
Chapter 16. Excitation and Inhibition Within the Spinal Cord
16.1 The Spinal Cord
16.2 Excitation Within the Central Nervous System
16.3 Postsynaptic Inhibition
16.4 Recurrent Inhibition and Renshaw Cells
16.5 Reciprocal Inhibition
16.6 Presynaptic Inhibition
16.7 Persistent Inward Currents
Chapter 17. Monosynaptic Reflexes
17.1 H-Reflex and M-Response
17.2 Tendon Tap Reflex (T-Reflex)
17.3 Effects of Voluntary Muscle Activation on Monosynaptic Reflexes
17.4 F-Wave
Chapter 18. Oligosynaptic and Polysynaptic Reflexes
18.1 Oligosynaptic Reflexes
18.2 Polysynaptic Reflexes
18.3 Flexor Reflex
18.4 Tonic Stretch Reflex
18.5 Tonic Vibration Reflex
18.6 Interaction Among Reflex Pathways
18.7 Inter-Joint and Inter-Limb Reflexes
Chapter 19. Long-Loop Reflexes and Reflex-Like Reactions
19.1 Preprogrammed Reactions
19.2 Preprogrammed Reactions Versus Stretch Reflexes
19.3 Afferent Sources of Preprogrammed Reactions
19.4 Preprogrammed Reactions During Movement Perturbations
19.5 Basic Features of Preprogrammed Reactions
19.6 Preprogrammed Corrections of Vertical Posture
19.7 Corrective Stumbling Reactions
Problems for Part IV
Part V. Control and Coordination of Goal-Oriented Movements
Chapter 20. Voluntary Control of a Single Muscle
20.1 What Is Voluntary Movement?
20.2 Feedforward and Feedback Control
20.3 Servo Control
20.4 Servo Hypothesis
20.5 α-γ Coactivation
20.6 Voluntary Activation of Muscles
20.7 Equilibrium-Point Hypothesis
Chapter 21. General Issues of Motor Control
21.1 Force Control
21.2 Engrams and the Generalized Motor Program
21.3 Internal Models
21.4 Equilibrium-Point Hypothesis: Main Ideas
21.5 Equilibrium-Point Hypothesis: Subtle Details
21.6 Dynamic Systems Approach
Chapter 22. Motor Synergies
22.1 The Problem of Motor Redundancy
22.2 Optimization Approaches
22.3 Bernstein’s Level of Synergies
22.4 Uniting Muscles Into Groups
22.5 Principle of Abundance
22.6 Ensuring Stability of Movements
22.7 Uncontrolled Manifold Hypothesis
Chapter 23. Patterns of Single-Joint Movements
23.1 Isotonic Movements and Isometric Contractions
23.2 Task Parameters and Performance Variables
23.3 Kinematic Patterns During Single-Joint Isotonic Movements
23.4 EMG Patterns During Single-Joint Isotonic Movements
23.5 EMG Patterns During Single-Joint Isometric Contractions
23.6 Dual-Strategy Hypothesis
23.7 Single-Joint Movements Within the Equilibrium-Point Hypothesis
Chapter 24. Multijoint Movement
24.1 Two Issues With Controlling Natural Reaching Movements
24.2 Interjoint Reflexes
24.3 Multijoint Coordination by the Spinal Cord
24.4 Supraspinal Mechanisms
24.5 Neural Control Variables for Multijoint Movements
24.6 Equilibrium-Trajectory Hypothesis
24.7 Hierarchical Control With Spatial Referent Coordinates
24.8 Multijoint Synergies
Chapter 25. Postural Control
25.1 Vertical Posture
25.2 Postural Sway
25.3 Role of the Vestibular System
25.4 Role of Vision
25.5 Role of Proprioception
25.6 Anticipatory Postural Adjustments
25.7 Corrective Postural Reactions
25.8 Postural Synergies
Chapter 26. Locomotion
26.1 Two Approaches to Locomotion
26.2 Central Pattern Generator
26.3 Locomotor Centers
26.4 Spinal Locomotion
26.5 Spinal Control of Locomotion in Humans
26.6 Gait Patterns
26.7 Dynamic Pattern Generation
26.8 Step Initiation
26.9 Corrective Stumbling Reaction
Chapter 27. Prehension
27.1 Hand Joints and Muscles
27.2 Cortical Representations of the Hand
27.3 Indices of Finger Interaction
27.4 Multifinger Synergies in Pressing Tasks
27.5 Grasping
27.6 Prehension Synergies and Principle of Superposition
Problems for Part V
Part VI. Sensorimotor Integration for Perception and Action
Chapter 28. Kinesthetic Perception
28.1 Sensation and Perception
28.2 Weber-Fechner Law
28.3 Ambiguity of Sensory Information
28.4 Afferent and Efferent Components of Perception
28.5 Vibration-Induced Kinesthetic Illusions
28.6 Distorted Efferent Copy and Preconceptions
28.7 Sense of Effort
28.8 Stability of Percepts
28.9 Perception–Action Coupling
Chapter 29. Multisensory Integration
29.1 Spatial Multisensory Integration for Limb Motor Control
29.2 Temporal Multisensory Integration for Limb Motor Control
29.3 Coordinate Frames for Limb Motor Control
29.4 Postural Balance and Motion Perception
29.5 Neural...
Details
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Angewandte Psychologie |
Genre: | Psychologie |
Rubrik: | Geisteswissenschaften |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9781718209527 |
ISBN-10: | 1718209525 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Latash, Mark L.
Singh, Tarkeshwar |
Hersteller: | Human Kinetics Publishers |
Maße: | 278 x 215 x 31 mm |
Von/Mit: | Mark L. Latash (u. a.) |
Erscheinungsdatum: | 30.01.2023 |
Gewicht: | 1,286 kg |
Über den Autor
Mark L. Latash, PhD, is a distinguished professor of kinesiology and the director of the Motor Control Laboratory at Penn State University. His research interests are the control and coordination of human voluntary movements, movement disorders in neurological patients, and effects of rehabilitation.
Latash has authored five books, edited 10 books, and had more than 400 peer-reviewed articles published. He was the founding editor of the journal Motor Control and is a former president of the International Society of Motor Control (ISMC). He is a fellow of the National Academy of Kinesiology (NAK) and member of the Society for Neuroscience (SfN). He has served as director of the annual Motor Control Summer School series and is a recipient of the ISMC’s Bernstein Prize in motor control and Penn State’s Pauline Schmitt Russell Distinguished Research Career Award.
Tarkeshwar Singh, PhD, is an assistant professor of kinesiology at Penn State University, where he serves as the director of the Sensorimotor Neuroscience and Learning Laboratory. Singh’s research interests are in the areas of multisensory integration, motor control, eye movements, and movement disorders. He has published over 30 peer-reviewed papers and three book chapters. He is a member of the Society for Neuroscience (SfN), the International Society of Motor Control (ISMC), the Society for the Neural Control of Movement (NCM), and the American Physiological Society (APS).
Latash has authored five books, edited 10 books, and had more than 400 peer-reviewed articles published. He was the founding editor of the journal Motor Control and is a former president of the International Society of Motor Control (ISMC). He is a fellow of the National Academy of Kinesiology (NAK) and member of the Society for Neuroscience (SfN). He has served as director of the annual Motor Control Summer School series and is a recipient of the ISMC’s Bernstein Prize in motor control and Penn State’s Pauline Schmitt Russell Distinguished Research Career Award.
Tarkeshwar Singh, PhD, is an assistant professor of kinesiology at Penn State University, where he serves as the director of the Sensorimotor Neuroscience and Learning Laboratory. Singh’s research interests are in the areas of multisensory integration, motor control, eye movements, and movement disorders. He has published over 30 peer-reviewed papers and three book chapters. He is a member of the Society for Neuroscience (SfN), the International Society of Motor Control (ISMC), the Society for the Neural Control of Movement (NCM), and the American Physiological Society (APS).
Inhaltsverzeichnis
Chapter 1. History, Evolution, and Motor Control
1.1 Brief History of Movement Studies
1.2 Evolution of Movements and Nikolai Bernstein’s Theory
1.3 Motor Control and Laws of Nature
Part I. Excitable Cells and Their Communication
Chapter 2. Membranes, Particles, and Equilibrium Potentials
2.1 The Biological Membrane
2.2 Movement in a Solution
2.3 Concentration of Water: Osmosis
2.4 Movement of Ions: The Nernst Equation
Chapter 3. Action Potential
3.1 Creation of a Membrane Potential
3.2 Basic Features of the Action Potential
3.3 Mechanisms of Generating an Action Potential
Chapter 4. Information Conduction and Transmission
4.1 Conduction of an Action Potential
4.2 Myelinated Fibers
4.3 The Structure of a Neuron
4.4 Information Coding in the Nervous System
4.5 Synaptic Transmission
4.6 Neurotransmitters
4.7 Temporal and Spatial Summation
Chapter 5. Skeletal Muscle
5.1 Skeletal Muscle Structure
5.2 Myofilaments
5.3 Neuromuscular Synapse
5.4 Mechanisms of Contraction
5.5 Types of Muscle Contractions
5.6 Elements of Mechanics
5.7 Force–Length and Force–Velocity Relations
5.8 External Regimes of Muscle Contraction
Chapter 6. Peripheral Receptors
6.1 General Classification and Properties of Receptors
6.2 Muscle Spindles
6.3 The Gamma-System
6.4 Golgi Tendon Organs
6.5 Other Muscle Receptors
6.6 Articular Receptors
6.7 Cutaneous Receptors
6.8 Signals From Peripheral Receptors
Chapter 7. Motor Units and Electromyography
7.1 The Motor Unit
7.2 Fast and Slow Motor Units
7.3 The Henneman Principle
7.4 Functional Roles of Different Motor Units
7.5 Electromyography
7.6 Processing Electromyographic Signals
Problems for Part I
Part II. Neuroanatomical Foundations of Motor Control
Chapter 8. Cerebral Cortex
8.1 Structure of the Cerebral Cortex
8.2 Cells in the Cerebral Cortex
8.3 Premotor Cortex and Supplementary Motor Area
8.4 Primary Motor Cortex
8.5 Efferent Output From the Cortical Motor Areas
8.6 Afferent Input Into the Cortical Motor Areas
8.7 Hemispheric Lateralization in the Cortical Motor Areas
8.8 Preparation for a Voluntary Movement
8.9 Neuronal Population Vectors
8.10 Encoding Movement Parameters in the M1
8.11 Brain–Machine Interfaces
Chapter 9. Basal Ganglia
9.1 Anatomy of the Basal Ganglia
9.2 Inputs and Outputs of the Basal Ganglia
9.3 Direct and Indirect Pathways Within the Basal Ganglia
9.4 Dopamine Modulation of Basal Ganglia Circuits
9.5 Motor Circuits Involving the Basal Ganglia
9.6 Activity of the Basal Ganglia During Movements
9.7 Movement Disorders Associated With the Basal Ganglia
9.8 Other Functions of the Basal Ganglia
Chapter 10. Cerebellum
10.1 Overall Structure of the Cerebellum
10.2 Inputs and Outputs of the Cerebellum
10.3 Pathways Within the Cerebellum
10.4 Distinct Cerebellar Regions Control Discrete Motor Functions
10.5 Cerebellar Control of Movement
10.6 Consequences of Cerebellar Lesions on Movements
10.7 Cerebellar Contribution to Motor Learning
10.8 Cerebellar Interactions With the Basal Ganglia and Cortex
Chapter 11. Brainstem and Extrapyramidal Tracts
11.1 Brainstem Anatomy
11.2 Reticular Formation
11.3 Superior Colliculus
11.4 Red Nucleus
11.5 Vestibular Nuclei
11.6 Cranial Nerves
11.7 Descending Tracts
Problems for Part II
Part III. Sensory Basis of Motor Control
Chapter 12. Central Processing of Somatosensory Information
12.1 First-Order Neurons
12.2 Second-Order Neurons
12.3 Third-Order Neurons
12.4 Proprioceptive System
12.5 Primary and Secondary Somatosensory Cortex
12.6 Integration of Somatosensory Input With Other Sensory Modalities
12.7 Injuries to Somatosensory Pathways
Chapter 13. Vestibular and Auditory System
13.1 Transduction in the Vestibular System
13.2 Vestibular Afferents Respond to Head Motion
13.3 Central Projections From the Otolith Organs and Semicircular Canals
13.4 Central Pathways That Stabilize Gaze, Posture, and Head Movements
13.5 Peripheral Auditory System
13.6 Central Auditory Projections From the Cochlea
13.7 Auditory Integration
13.8 Auditory Thalamus and Cortex
13.9 Auditory Cortex and Limb Motor Control
Chapter 14. Visual System
14.1 Structure of the Eye
14.2 Structure of the Retina
14.3 Rods and Cones
14.4 Optic Nerve, Tracts, and Radiations
14.5 Striate Cortex
14.6 Retinotopic Organization of V1
14.7 Extrastriate Cortex
14.8 Neurons of the Two Visual Streams
14.9 Visual Deficits Due to Area-Specific Visual System Damage
14.10 Ocular Movements
Problems for Part III
Part IV. Reflexes and Reflex-Like Movements
Chapter 15. Reflexes
15.1 Definition of a Reflex
15.2 Reflex Arc, Gain, and Latency
15.3 Reflex Classifications
15.4 Conditioned Reflexes
Chapter 16. Excitation and Inhibition Within the Spinal Cord
16.1 The Spinal Cord
16.2 Excitation Within the Central Nervous System
16.3 Postsynaptic Inhibition
16.4 Recurrent Inhibition and Renshaw Cells
16.5 Reciprocal Inhibition
16.6 Presynaptic Inhibition
16.7 Persistent Inward Currents
Chapter 17. Monosynaptic Reflexes
17.1 H-Reflex and M-Response
17.2 Tendon Tap Reflex (T-Reflex)
17.3 Effects of Voluntary Muscle Activation on Monosynaptic Reflexes
17.4 F-Wave
Chapter 18. Oligosynaptic and Polysynaptic Reflexes
18.1 Oligosynaptic Reflexes
18.2 Polysynaptic Reflexes
18.3 Flexor Reflex
18.4 Tonic Stretch Reflex
18.5 Tonic Vibration Reflex
18.6 Interaction Among Reflex Pathways
18.7 Inter-Joint and Inter-Limb Reflexes
Chapter 19. Long-Loop Reflexes and Reflex-Like Reactions
19.1 Preprogrammed Reactions
19.2 Preprogrammed Reactions Versus Stretch Reflexes
19.3 Afferent Sources of Preprogrammed Reactions
19.4 Preprogrammed Reactions During Movement Perturbations
19.5 Basic Features of Preprogrammed Reactions
19.6 Preprogrammed Corrections of Vertical Posture
19.7 Corrective Stumbling Reactions
Problems for Part IV
Part V. Control and Coordination of Goal-Oriented Movements
Chapter 20. Voluntary Control of a Single Muscle
20.1 What Is Voluntary Movement?
20.2 Feedforward and Feedback Control
20.3 Servo Control
20.4 Servo Hypothesis
20.5 α-γ Coactivation
20.6 Voluntary Activation of Muscles
20.7 Equilibrium-Point Hypothesis
Chapter 21. General Issues of Motor Control
21.1 Force Control
21.2 Engrams and the Generalized Motor Program
21.3 Internal Models
21.4 Equilibrium-Point Hypothesis: Main Ideas
21.5 Equilibrium-Point Hypothesis: Subtle Details
21.6 Dynamic Systems Approach
Chapter 22. Motor Synergies
22.1 The Problem of Motor Redundancy
22.2 Optimization Approaches
22.3 Bernstein’s Level of Synergies
22.4 Uniting Muscles Into Groups
22.5 Principle of Abundance
22.6 Ensuring Stability of Movements
22.7 Uncontrolled Manifold Hypothesis
Chapter 23. Patterns of Single-Joint Movements
23.1 Isotonic Movements and Isometric Contractions
23.2 Task Parameters and Performance Variables
23.3 Kinematic Patterns During Single-Joint Isotonic Movements
23.4 EMG Patterns During Single-Joint Isotonic Movements
23.5 EMG Patterns During Single-Joint Isometric Contractions
23.6 Dual-Strategy Hypothesis
23.7 Single-Joint Movements Within the Equilibrium-Point Hypothesis
Chapter 24. Multijoint Movement
24.1 Two Issues With Controlling Natural Reaching Movements
24.2 Interjoint Reflexes
24.3 Multijoint Coordination by the Spinal Cord
24.4 Supraspinal Mechanisms
24.5 Neural Control Variables for Multijoint Movements
24.6 Equilibrium-Trajectory Hypothesis
24.7 Hierarchical Control With Spatial Referent Coordinates
24.8 Multijoint Synergies
Chapter 25. Postural Control
25.1 Vertical Posture
25.2 Postural Sway
25.3 Role of the Vestibular System
25.4 Role of Vision
25.5 Role of Proprioception
25.6 Anticipatory Postural Adjustments
25.7 Corrective Postural Reactions
25.8 Postural Synergies
Chapter 26. Locomotion
26.1 Two Approaches to Locomotion
26.2 Central Pattern Generator
26.3 Locomotor Centers
26.4 Spinal Locomotion
26.5 Spinal Control of Locomotion in Humans
26.6 Gait Patterns
26.7 Dynamic Pattern Generation
26.8 Step Initiation
26.9 Corrective Stumbling Reaction
Chapter 27. Prehension
27.1 Hand Joints and Muscles
27.2 Cortical Representations of the Hand
27.3 Indices of Finger Interaction
27.4 Multifinger Synergies in Pressing Tasks
27.5 Grasping
27.6 Prehension Synergies and Principle of Superposition
Problems for Part V
Part VI. Sensorimotor Integration for Perception and Action
Chapter 28. Kinesthetic Perception
28.1 Sensation and Perception
28.2 Weber-Fechner Law
28.3 Ambiguity of Sensory Information
28.4 Afferent and Efferent Components of Perception
28.5 Vibration-Induced Kinesthetic Illusions
28.6 Distorted Efferent Copy and Preconceptions
28.7 Sense of Effort
28.8 Stability of Percepts
28.9 Perception–Action Coupling
Chapter 29. Multisensory Integration
29.1 Spatial Multisensory Integration for Limb Motor Control
29.2 Temporal Multisensory Integration for Limb Motor Control
29.3 Coordinate Frames for Limb Motor Control
29.4 Postural Balance and Motion Perception
29.5 Neural...
1.1 Brief History of Movement Studies
1.2 Evolution of Movements and Nikolai Bernstein’s Theory
1.3 Motor Control and Laws of Nature
Part I. Excitable Cells and Their Communication
Chapter 2. Membranes, Particles, and Equilibrium Potentials
2.1 The Biological Membrane
2.2 Movement in a Solution
2.3 Concentration of Water: Osmosis
2.4 Movement of Ions: The Nernst Equation
Chapter 3. Action Potential
3.1 Creation of a Membrane Potential
3.2 Basic Features of the Action Potential
3.3 Mechanisms of Generating an Action Potential
Chapter 4. Information Conduction and Transmission
4.1 Conduction of an Action Potential
4.2 Myelinated Fibers
4.3 The Structure of a Neuron
4.4 Information Coding in the Nervous System
4.5 Synaptic Transmission
4.6 Neurotransmitters
4.7 Temporal and Spatial Summation
Chapter 5. Skeletal Muscle
5.1 Skeletal Muscle Structure
5.2 Myofilaments
5.3 Neuromuscular Synapse
5.4 Mechanisms of Contraction
5.5 Types of Muscle Contractions
5.6 Elements of Mechanics
5.7 Force–Length and Force–Velocity Relations
5.8 External Regimes of Muscle Contraction
Chapter 6. Peripheral Receptors
6.1 General Classification and Properties of Receptors
6.2 Muscle Spindles
6.3 The Gamma-System
6.4 Golgi Tendon Organs
6.5 Other Muscle Receptors
6.6 Articular Receptors
6.7 Cutaneous Receptors
6.8 Signals From Peripheral Receptors
Chapter 7. Motor Units and Electromyography
7.1 The Motor Unit
7.2 Fast and Slow Motor Units
7.3 The Henneman Principle
7.4 Functional Roles of Different Motor Units
7.5 Electromyography
7.6 Processing Electromyographic Signals
Problems for Part I
Part II. Neuroanatomical Foundations of Motor Control
Chapter 8. Cerebral Cortex
8.1 Structure of the Cerebral Cortex
8.2 Cells in the Cerebral Cortex
8.3 Premotor Cortex and Supplementary Motor Area
8.4 Primary Motor Cortex
8.5 Efferent Output From the Cortical Motor Areas
8.6 Afferent Input Into the Cortical Motor Areas
8.7 Hemispheric Lateralization in the Cortical Motor Areas
8.8 Preparation for a Voluntary Movement
8.9 Neuronal Population Vectors
8.10 Encoding Movement Parameters in the M1
8.11 Brain–Machine Interfaces
Chapter 9. Basal Ganglia
9.1 Anatomy of the Basal Ganglia
9.2 Inputs and Outputs of the Basal Ganglia
9.3 Direct and Indirect Pathways Within the Basal Ganglia
9.4 Dopamine Modulation of Basal Ganglia Circuits
9.5 Motor Circuits Involving the Basal Ganglia
9.6 Activity of the Basal Ganglia During Movements
9.7 Movement Disorders Associated With the Basal Ganglia
9.8 Other Functions of the Basal Ganglia
Chapter 10. Cerebellum
10.1 Overall Structure of the Cerebellum
10.2 Inputs and Outputs of the Cerebellum
10.3 Pathways Within the Cerebellum
10.4 Distinct Cerebellar Regions Control Discrete Motor Functions
10.5 Cerebellar Control of Movement
10.6 Consequences of Cerebellar Lesions on Movements
10.7 Cerebellar Contribution to Motor Learning
10.8 Cerebellar Interactions With the Basal Ganglia and Cortex
Chapter 11. Brainstem and Extrapyramidal Tracts
11.1 Brainstem Anatomy
11.2 Reticular Formation
11.3 Superior Colliculus
11.4 Red Nucleus
11.5 Vestibular Nuclei
11.6 Cranial Nerves
11.7 Descending Tracts
Problems for Part II
Part III. Sensory Basis of Motor Control
Chapter 12. Central Processing of Somatosensory Information
12.1 First-Order Neurons
12.2 Second-Order Neurons
12.3 Third-Order Neurons
12.4 Proprioceptive System
12.5 Primary and Secondary Somatosensory Cortex
12.6 Integration of Somatosensory Input With Other Sensory Modalities
12.7 Injuries to Somatosensory Pathways
Chapter 13. Vestibular and Auditory System
13.1 Transduction in the Vestibular System
13.2 Vestibular Afferents Respond to Head Motion
13.3 Central Projections From the Otolith Organs and Semicircular Canals
13.4 Central Pathways That Stabilize Gaze, Posture, and Head Movements
13.5 Peripheral Auditory System
13.6 Central Auditory Projections From the Cochlea
13.7 Auditory Integration
13.8 Auditory Thalamus and Cortex
13.9 Auditory Cortex and Limb Motor Control
Chapter 14. Visual System
14.1 Structure of the Eye
14.2 Structure of the Retina
14.3 Rods and Cones
14.4 Optic Nerve, Tracts, and Radiations
14.5 Striate Cortex
14.6 Retinotopic Organization of V1
14.7 Extrastriate Cortex
14.8 Neurons of the Two Visual Streams
14.9 Visual Deficits Due to Area-Specific Visual System Damage
14.10 Ocular Movements
Problems for Part III
Part IV. Reflexes and Reflex-Like Movements
Chapter 15. Reflexes
15.1 Definition of a Reflex
15.2 Reflex Arc, Gain, and Latency
15.3 Reflex Classifications
15.4 Conditioned Reflexes
Chapter 16. Excitation and Inhibition Within the Spinal Cord
16.1 The Spinal Cord
16.2 Excitation Within the Central Nervous System
16.3 Postsynaptic Inhibition
16.4 Recurrent Inhibition and Renshaw Cells
16.5 Reciprocal Inhibition
16.6 Presynaptic Inhibition
16.7 Persistent Inward Currents
Chapter 17. Monosynaptic Reflexes
17.1 H-Reflex and M-Response
17.2 Tendon Tap Reflex (T-Reflex)
17.3 Effects of Voluntary Muscle Activation on Monosynaptic Reflexes
17.4 F-Wave
Chapter 18. Oligosynaptic and Polysynaptic Reflexes
18.1 Oligosynaptic Reflexes
18.2 Polysynaptic Reflexes
18.3 Flexor Reflex
18.4 Tonic Stretch Reflex
18.5 Tonic Vibration Reflex
18.6 Interaction Among Reflex Pathways
18.7 Inter-Joint and Inter-Limb Reflexes
Chapter 19. Long-Loop Reflexes and Reflex-Like Reactions
19.1 Preprogrammed Reactions
19.2 Preprogrammed Reactions Versus Stretch Reflexes
19.3 Afferent Sources of Preprogrammed Reactions
19.4 Preprogrammed Reactions During Movement Perturbations
19.5 Basic Features of Preprogrammed Reactions
19.6 Preprogrammed Corrections of Vertical Posture
19.7 Corrective Stumbling Reactions
Problems for Part IV
Part V. Control and Coordination of Goal-Oriented Movements
Chapter 20. Voluntary Control of a Single Muscle
20.1 What Is Voluntary Movement?
20.2 Feedforward and Feedback Control
20.3 Servo Control
20.4 Servo Hypothesis
20.5 α-γ Coactivation
20.6 Voluntary Activation of Muscles
20.7 Equilibrium-Point Hypothesis
Chapter 21. General Issues of Motor Control
21.1 Force Control
21.2 Engrams and the Generalized Motor Program
21.3 Internal Models
21.4 Equilibrium-Point Hypothesis: Main Ideas
21.5 Equilibrium-Point Hypothesis: Subtle Details
21.6 Dynamic Systems Approach
Chapter 22. Motor Synergies
22.1 The Problem of Motor Redundancy
22.2 Optimization Approaches
22.3 Bernstein’s Level of Synergies
22.4 Uniting Muscles Into Groups
22.5 Principle of Abundance
22.6 Ensuring Stability of Movements
22.7 Uncontrolled Manifold Hypothesis
Chapter 23. Patterns of Single-Joint Movements
23.1 Isotonic Movements and Isometric Contractions
23.2 Task Parameters and Performance Variables
23.3 Kinematic Patterns During Single-Joint Isotonic Movements
23.4 EMG Patterns During Single-Joint Isotonic Movements
23.5 EMG Patterns During Single-Joint Isometric Contractions
23.6 Dual-Strategy Hypothesis
23.7 Single-Joint Movements Within the Equilibrium-Point Hypothesis
Chapter 24. Multijoint Movement
24.1 Two Issues With Controlling Natural Reaching Movements
24.2 Interjoint Reflexes
24.3 Multijoint Coordination by the Spinal Cord
24.4 Supraspinal Mechanisms
24.5 Neural Control Variables for Multijoint Movements
24.6 Equilibrium-Trajectory Hypothesis
24.7 Hierarchical Control With Spatial Referent Coordinates
24.8 Multijoint Synergies
Chapter 25. Postural Control
25.1 Vertical Posture
25.2 Postural Sway
25.3 Role of the Vestibular System
25.4 Role of Vision
25.5 Role of Proprioception
25.6 Anticipatory Postural Adjustments
25.7 Corrective Postural Reactions
25.8 Postural Synergies
Chapter 26. Locomotion
26.1 Two Approaches to Locomotion
26.2 Central Pattern Generator
26.3 Locomotor Centers
26.4 Spinal Locomotion
26.5 Spinal Control of Locomotion in Humans
26.6 Gait Patterns
26.7 Dynamic Pattern Generation
26.8 Step Initiation
26.9 Corrective Stumbling Reaction
Chapter 27. Prehension
27.1 Hand Joints and Muscles
27.2 Cortical Representations of the Hand
27.3 Indices of Finger Interaction
27.4 Multifinger Synergies in Pressing Tasks
27.5 Grasping
27.6 Prehension Synergies and Principle of Superposition
Problems for Part V
Part VI. Sensorimotor Integration for Perception and Action
Chapter 28. Kinesthetic Perception
28.1 Sensation and Perception
28.2 Weber-Fechner Law
28.3 Ambiguity of Sensory Information
28.4 Afferent and Efferent Components of Perception
28.5 Vibration-Induced Kinesthetic Illusions
28.6 Distorted Efferent Copy and Preconceptions
28.7 Sense of Effort
28.8 Stability of Percepts
28.9 Perception–Action Coupling
Chapter 29. Multisensory Integration
29.1 Spatial Multisensory Integration for Limb Motor Control
29.2 Temporal Multisensory Integration for Limb Motor Control
29.3 Coordinate Frames for Limb Motor Control
29.4 Postural Balance and Motion Perception
29.5 Neural...
Details
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Angewandte Psychologie |
Genre: | Psychologie |
Rubrik: | Geisteswissenschaften |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9781718209527 |
ISBN-10: | 1718209525 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Latash, Mark L.
Singh, Tarkeshwar |
Hersteller: | Human Kinetics Publishers |
Maße: | 278 x 215 x 31 mm |
Von/Mit: | Mark L. Latash (u. a.) |
Erscheinungsdatum: | 30.01.2023 |
Gewicht: | 1,286 kg |
Warnhinweis