Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Vektorbündel
Vom Möbius-Bündel bis zum J-Homomorphismus
Taschenbuch von Karlheinz Knapp
Sprache: Deutsch

49,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte.
Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.
Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte.
Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.
Über den Autor
Prof. Dr. Karlheinz Knapp, Promotion und Habilitation an der Universität Bonn, seit 1979 Hochschullehrer an der Universität Wuppertal, lehrt und forscht seit vielen Jahren in der Mathematik mit Schwerpunkt Topologie
Zusammenfassung

Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte.

Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.

Inhaltsverzeichnis
Grundlagen.- Stabilisierungssequenz und charakteristische Klassen.- Vektorbündel und stabile Homotopie.
Details
Erscheinungsjahr: 2013
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xiii
595 S.
49 s/w Illustr.
595 S. 49 Abb.
ISBN-13: 9783658031138
ISBN-10: 3658031131
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Knapp, Karlheinz
Hersteller: Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH
Verantwortliche Person für die EU: Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 240 x 168 x 33 mm
Von/Mit: Karlheinz Knapp
Erscheinungsdatum: 24.09.2013
Gewicht: 1,011 kg
Artikel-ID: 105696971
Über den Autor
Prof. Dr. Karlheinz Knapp, Promotion und Habilitation an der Universität Bonn, seit 1979 Hochschullehrer an der Universität Wuppertal, lehrt und forscht seit vielen Jahren in der Mathematik mit Schwerpunkt Topologie
Zusammenfassung

Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte.

Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.

Inhaltsverzeichnis
Grundlagen.- Stabilisierungssequenz und charakteristische Klassen.- Vektorbündel und stabile Homotopie.
Details
Erscheinungsjahr: 2013
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xiii
595 S.
49 s/w Illustr.
595 S. 49 Abb.
ISBN-13: 9783658031138
ISBN-10: 3658031131
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Knapp, Karlheinz
Hersteller: Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH
Verantwortliche Person für die EU: Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 240 x 168 x 33 mm
Von/Mit: Karlheinz Knapp
Erscheinungsdatum: 24.09.2013
Gewicht: 1,011 kg
Artikel-ID: 105696971
Sicherheitshinweis